
Technical University of Munich

Department of Mathematics

Interventional Causal Structure Learning
With Gaussian Process Regression

Master’s Thesis

by

Johannes Michael Schmitt
Matriculation Number: - - -

Study Program: Mathematics in Data Science

Supervisor and Examiner: Prof. Dr. Mathias Drton

Date of Submission (electronically): 15th of October 2020



Titel (Deutsch): Interventionelles Lernen kausaler Strukturen mit Gauß-Prozess-Regression
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Abstract

We review the SCM(Structural Causal Model)-view of causal modeling, which features
functional dependencies between direct causes and direct effects. In our framework these
functions are modeled in the Gaussian Process Regression setting in order to capture
nonlinear functions and employ a flexible, non-parametric regression method that works
well in the small data setting, which arises when admitting interventions that are assumed
to be scarce. Further, we explore how these interventions can be utilized to extract the
causal structure while simultaneously learning the functional dependencies.
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1 Introduction

The very recent paper of von Kügelgen et al. (2019) - parts of which inspired this the-
sis - explores the problem of causal discovery, i.e. learning an underlying causal graph
structure along with functional dependencies between variables as indicated by the graph
structure. The setting they chose will also become our environment to investigate ap-
proaches of achieving the goal of causal discovery: we consider a

· small number of variables
· small number of data points, i.e. no ”Big Data”
· situation, where interventions, which in practice amount to real experiments, are

possible

Additionally, we prefer a setting of few assumptions on functional dependencies between,
or distributions of variables or at the very least different assumptions than those common
in the prevailing literature.

In this context, von Kügelgen et al. (2019)[pp. 1] mention the possible application scenario
of experimental scientific discovery. In general, science or any other effort to understand
the inner workings of processes that yield data, which we can observe, is a prime candidate
for utilizing the concepts and methods of statistical causality (see Chapter 2).

As Gaussian Process Regression is a compelling technique for the purpose of modeling
functional dependencies under the conditions we listed above, we decide to examine this
method (see Chapter 3). The idea that this technique fits our objective particularly well
is evidenced for example by efforts of Duvenaud (2014) to construct a machinery of au-
tomatic model construction with Gaussian Processes going in the direction of a vision
labelled ”Automatic Statistician” Duvenaud (2014)[p. 6], i.e. the idea of feeding data ac-
companied with minimal a priori knowledge to such an automatic process that in turn
yields advanced statistical information, e.g. about regression problems.

In Chapter 4 we combine results from the previous chapters in order to explore ways to
estimate the causal structure in conjuncture with addressing the question of estimating
functional dependencies between variables. Lastly, Chapter 5 presents simulations of these
devices.
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1 Introduction

1.1 Notation And Basic Definitions

We adapt the style of Peters et al. (2017).

Abbreviations

p.*, pp.* page *, page * and following [may be relative to just the cited
article when in a collection]

ch. chapter

wrt. ”with respect to”

iff ”if and only if”

General

:= ”defined as”

∀ ”for all”

∃ ”it exists”

R,R+,N real values, positive real values, natural numbers

x Value in R

x, xi Vector in Rd, for some d ∈ N, and ith-value of the vector

| · | Absolute value for numeric arguments, cardinality for sets

1S Indicator function (0-1) for set S

I Identity matrix

det Determinant of a matrix
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1 Introduction

Probability

(Ω,A,P) General background probability space with Ω, set of all out-
comes ω, further, σ-field A as collection of possible events and
probability measure P, which is also the joint distribution
of all variables considered

X Random Variable, i.e. function: Ω→ R

PX Push-forward measure of X

p(x) Density of random variable X

X Random Vector, i.e. vector of random variables, access to ith

coordinate via Xi

p(x), p(x1, ..., xn) Density of n random vector X, Joint Density of random
variables X1, ..., Xn, identical for X = (X1, ..., Xn)⊗n

i=1 PX Product measure of n iid. instances of random variable X

E[X] Expectation of random variable X

V[X] Variance of random variable X

E[X|Y ] Conditional expectation of random variable X, given σ(Y )

V[X|Y ] Conditional variance of random variable X, given σ(Y )

P[S|Y ] Conditional probability of set S ⊆ Ω, given σ(Y )

p(x|Y = y) Conditional density of random variable X, given Y = y,
shortened by p(x|y)

X |= Y X is independent of Y

X |= Y |Z X is conditionally independent of Y given Z

∼ ”with distribution”

iid. ”independent identically distributed”

cdf cumulative distribution function

N (µ, σ2) (Density of) normal distribution (univariate) with mean µ and
variance σ2

N (x|µ,Σ) Density (as function of x) of normal distribution (multivariate)
with mean vector µ and covariance matrix Σ

3



1 Introduction

Graph Theory

G = (V,E ) Graph G with the set of nodes/vertices V = {v1, ..., vd} and
the set of edges E ⊂ V×V from start to end node, where we
exclude edges with the same start and end node, i.e. (vi, vi) ;
two nodes vi, vj are adjacent if (vi, vj) ∈ E or (vj, vi) ∈ E ; G
is fully connected if all pairs of nodes are adjacent; we call an
edge undirected if we have both (vi, vj) ∈ E and (vj, vi) ∈ E ; if
an edge is not undirected it is undirected, which is represented
with an arrow vi → vj; if all edges in G are directed, we also
call G directed ; we obtain the skeleton of a graph if we replace
every directed edge in the graph with an undirected one

G1 ≤ G2 Graph G1 is a subgraph of G2 if V1 = V2 and E1 ⊆ E2; if
additionally E1 6= E2, then G1 is a proper subgraph

vi1 , ...vim A sequence of (at least two distinct) nodes with an edge be-
tween vik and vik+1

for k = 1, ...,m − 1 is called path; if all
edges are directed then the path is also directed ; a partially di-
rected acyclic graph (PDAG) has no directed cycles, i.e. no two
nodes vi, vj, with directed paths from vi to vj and vice versa; if
additionally all edges are directed we speak of a directed acyclic
graph (DAG)

SGi , sGi Special set of nodes vi are are also identified with the cor-
responding random variables Xi and lower case for set of its
realizations:

PAGi , paGi Set of parents of node vi, i.e. vertices vj ∈ V, such that
(vj, vi) ∈ E ; a node without parents is called source, all sources
of a graph G are collected in SOG, all non-sources or dependants
in DPG = V \ SOG

CHGi , chGi Set of children of node vi, i.e. vertices vj ∈ V, such that
(vi, vj) ∈ E ; an immortality/v-structure is a collection of three
nodes, such that one is a child of the other two, which are not
adjacent themselves; a node without children is called sink

ANGi , anGi Set of ancestors of node vi, i.e. vertices vj ∈ V, such that
there exists a directed path from vj to vi

DEGi , deGi Set of descendants of node vi, i.e. vertices vj ∈ V, such that
there exists a directed path from vi to vj; a permutation π is
called topological/causal ordering, if π(i) < π(j) for vj ∈ DEGi

NDGi , ndGi Set of non-descendants of node vi, i.e. vertices vj ∈ V \(
DEGi ∪{vi}

)
A |= G B|S Set of nodes A and set of nodes B are d-separated by set of

nodes S in G, details can be found in Section 2.2
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1 Introduction

1.2 Standard Background Framework

We will now describe a background framework, which we will utilize throughout this the-
sis and extend if needed (or partially adapt as in Chapter 3) (see e.g. Schmidt (2011),
Shorack (2017)).

Starting with the background probability space (Ω,A,P), we consider d univariate ran-
dom variables (i.e. taking values in R) collected in a random vector X = (X1, ...Xd).
We have for the entire vector X ∼ PX with joint density p(x) = p(x1, ..., xn) wrt. the
Lebesgue measure in d dimensions (i.e. we assume PX << λd in order to obtain p(x) as
the Radon Nikodym derivative). Analogously, we have for the marginal distributions PXi

marginal densities wrt. the Lebesgue measure λ. Densities in this work are always defined
to be wrt. the Lebesgue measure. When dealing with conditional densities we assume the
existence with the marginal density always taking non-zero values.

For a given random variable X we denote the n iid. copies describing samples ∼ PX as
random variables, by X(j) with j ∈ {1, ..., n}. For the collection of such random samples
for all considered variables Xi we have

((X
(j)
1 , ..., X

(j)
d ), j = 1, ..., n) ∼

n⊗
j=1

PX (1.1)

which ultimately needs to be extended in Chapter 4.
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2 Foundations Of Statistical Causality

As it is central to the human experience of reasoning about the real world, the notion
of causality fascinates many disciplines of scientific inquiry. With the inductive character
of the scientific method prescribing the collection and interpretation of data, the task
of formalizing the idea of causality naturally becomes a statistical one. Fortunately, the
language of probability, as Pearl (2009)[pp. 1] argues, is suited quite well for the purpose
of understanding causality, since we are dealing with noisy observations, uncertainty and
exceptions in real world applications.

This is not say that a theory of causality as proposed by statistics can solve all mysteries
around the concept or even validate its existence, which has been contested multiple times,
for example in the context of physics (see e.g. DAriano (2018)). We rather seek to provide
a machinery for the use in data analysis that extends the usual framework of detecting
dependencies in the sense of associations to detecting the directions of the dependencies.
These are loaded with an interpretation of causality, i.e. they have a causal direction,
which becomes a meaningful concept in the context of a specific causal model (see later).

2.1 The Starting Point And First General Assumptions

For this section see Lopez-Paz (2016)[ch. 6] and Peters et al. (2017)[ch. 1,2].

To go beyond modeling associations from observational data, i.e. data sampled from the
joint distribution p(x1, ..., xd), we first need to recognize the symmetry embedded in the
concept of statistical (in)dependency: if a variable is (in)dependent on/of another, then
the statement also holds vice versa. Both directions can be modeled for the purpose of
prediction, yet the structure of the data-generating process is still not identifiable. In order
to differentiate between cause and effect, i.e. to model the generation of data in a causal
model, we need to reflect the asymmetry between cause and effect that characterizes the
causality: the cause generates the effect, but not vice versa (with respect to a distinct
causation; for cyclic structures we can have such causations in both directions).

We further understand causality modeled among a certain number of measured variables
as an abstraction of more complicated underlying processes: for a given causal dependency
(e.g. an physical one) it is often possible to ”zoom in” and determine intermediate causes
and effects. The notion of time is influential for causality as for example ”[...] physics in-
corporates causality into its basic laws by excluding causation from future to past” Peters
et al. (2017)[p. 26]. However, the statistical approach to causal modeling in a further effort
of abstraction merely implicitly addresses time by introducing a hierarchy with the causal
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2 Foundations Of Statistical Causality

directions. We assume in this setting a simple form of hierarchy by restricting ourselves
to acyclic causal structures, even if cyclic causal structures are investigated in various
papers (see e.g. Mooij et al. (2011)).

There are additional general assumptions about causality that lead to justifications for
model assumptions and causal discovery techniques, notably the independence of mecha-
nisms, that is the premise, that ”[...] [t]he causal generative process of a systems variables
is composed of autonomous modules that do not inform or influence each other” Peters
et al. (2017)[p. 19], which is understood as a characteristic feature. Since the universal
applicability is debatable, as Peters et al. (2017)[pp. 19] note themselves, we won’t refer
to it in our setting.

2.2 Establishing A Link Between Distribution And Graph

For this section see Peters et al. (2017)[ch. 6], Peters (2012)[ch. 2].

As we want to implement the intuitions expressed in the previous section in a formal
way, we recognize the persistent themes of asymmetry and hierarchy, which directs our
attention to the language of graphs.

More specifically, in our case we consider directed acyclic graphs (DAGs), with the stan-
dard setting, X = (X1, ...Xd). The random variables Xi correspond to individual nodes of
a graph G = (V,E). For notational convenience, we can directly identify sets of vertices
with sets of random variables, as done for example in Definition 2.2 or Theorem 2.3. More
on basic definitions from graph theory can be found in Section 1.1. We will now give two
further definitions in that realm:

We call a path between vi1 , ...vim blocked by a set S ⊆ V, with vi1 , vim /∈ S if ∃ vik , such
that

i) either vik ∈ S and the neighboring nodes in the path vik−1
and vik+1

are not both
parents of vik ,

ii) or ({vik} ∪DEik) ∩ S = ∅ and both vik−1
and vik+1

are parents of vik ,

which lays the groundwork for

Definition 2.1 (d-separation).
We call two disjoint sets A,B ⊆ V d-separated by a third set S ⊆ V (disjoint from A
and B) in a graph G denoted by A |= G B|S, if every path between nodes in A and B is
blocked by S.

This definition yields the central criterion of graphs, that is associated to a property
of the joint probability distribution, i.e. conditional independence among (sets) of its
coordinates, via the following definitions:

7



2 Foundations Of Statistical Causality

Definition 2.2 (Global Markov Property).
A joint distribution PX is said to have the global Markov property with respect to a
DAG G if A |= G B|S ⇒ A |= B|S for all disjoint A,B,S ⊆ V.

This feature can also be represented in two other ways:

Theorem 2.3 (Markov property equivalences).
The global Markov property of a joint distribution PX with respect to a graph G is equivalent
to the following two characterizations:

i) the local Markov property: Xi |= NDGi |PAGi for all i = 1, ..., d
ii) the Markov factorization property:

p(x1, ..., xd) =
d∏
i=1

p(xi|paGi ) (2.1)

where we call p(xi|paGi ) the causal Markov kernels.

The second characterization requires the joint distribution to have a density, which is en-
tailed in our standard setting. The proof is referenced in Peters et al. (2017)[p. 101]. The
Markov factorization will play a major role in the discussions of this thesis as it allows
access to localized building blocks of the total joint distribution, thus breaking it up into
more manageable parts.

Next, we define the converse of the global Markov property:

Definition 2.4 (Faithfulness).
A joint distribution PX is said to be faithful to a DAG G if A |= G B|S ⇐ A |= B|S for
all disjoint A,B,S ⊆ V.

Naturally, if both any Markov property (we will from now on just say: the Markov prop-
erty) and faithfulness hold for a distribution with respect to a graph, any d-separation of
(sets of) nodes in the graph can be associated uniquely with the conditional independence
statement of the corresponding (sets of) random variables.

A further characteristic that extends the Markov property is the following:

Definition 2.5 (Causal Minimality).
A joint distribution PX is said to satisfy causal minimality with respect to a DAG G,
if it is Markov with respect to G, but not any proper subgraph of G.

The Markov property together with faithfulness implies causal minimality (for a proof see
e.g. Peters et al. (2017)[p. 108]).

Given a graph, i.e. an abstract representation of the causal structure, in order to examine
all distributions that are Markov with respect to that graph, we collect them in a set
M(G) := {PX : PX Markov wrt. G}, which becomes an attribute of graphs:

8



2 Foundations Of Statistical Causality

Definition 2.6 (Markov Equivalence).
Two graphs G1 and G2 are called Markov equivalent, if M(G1) = M(G2). The set
{G̃ :M(G̃) =M(G)} is the Markov equivalence class of the graph G.

The Markov equivalence class of a graph G = (V,E ) can be represented by a completed
PDAG: CPDAG(G) = (V, Ẽ ) with edge set Ẽ that contains an edge (i, j) if and only if
any member of the Markov equivalence class does. More precisely we have

Lemma 2.7 (Test of Markov equivalence in the graph).
Two DAGs are Markov equivalent if and only if they have the same skeleton and same
immortalities (v-structures).

The proof is referenced in Peters et al. (2017)[p. 102].

2.3 The Structural Causal Model (SCM)

For this section see Peters et al. (2017)[ch. 6, 7], Peters (2012)[ch. 2], Bongers et al.
(2016)[pp. 4].

After connecting the representation of variables in probabilistic form (i.e. the joint dis-
tribution) with the representation in graphical form describing the causal structure, we
now examine another form of representation: structural equations. As these turn out to
be quite rich in the information, we directly define a causal model with them:

Definition 2.8 (The Structural Causal Model).
A structural causal model (SCM) S = (S,PN) consisting of a collection of d str-
cutural equations S = (S1, ...Sd) that is assignments with xi, ni ∈ R, pai ∈ R|PAi |,
i ∈ {1, ..., d} of the form

Si : xi := fi(pai, ni)

Xi :=as fi(PAi, Ni)
(2.2)

where the inputs PAi ⊆ {X1, ..., Xd}\{Xi} are the parents of Xi, which can be identified
with the corresponding parents PAGi in the associated graph representation G: PAi =
PAGi . The graph G contains a directed edge from each parent (a direct cause) to the
respective variable that is the function of its parents (a direct effect) of its direct causes.
As we assume acyclicity we have that G is a DAG.
Further we have a joint distribution PN over all noise variables (N1, ..., Nd) = N which
are required to be jointly independent.

The independence of the noise variables can be viewed as a manifestation of the assump-
tion of causal sufficiency, i.e. the absence of hidden variables, which can lead to different
results when using the causal structure for the purpose of inference (see e.g. Heinze-Deml
et al. (2018)[p. 5]).

We now address the question of what the previous definition means for the observational
distribution, that is the full unaltered joint distribution of a solution of the structural
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2 Foundations Of Statistical Causality

equations: X, a random vector with almost sure (as.) equalities Xi = fi(PAi, Ni) as (2.2)
defines.

Theorem 2.9 (Observational Distribution From SCM).
A SCM S entails a unique distribution over a given solution X (and thus the other as.
solutions) which we will denote by PS

X (or with context just PX).

Proof. As we exclude cycles in the SCM, we can for any given solution X recursively
substitute the functional assignments into each other leading to a unique substitution
procedure for each variable Xi, which yields a unique function gi of the noises N =
(N1, ..., Nd):

Xi = gi((Nk)k∈ANi
) (2.3)

where the equality holds almost surely and thus in distribution and ANi are the ancestors
of Xi in the SCM. As PX is determined by the joint cdf FX(x) = P(X1 ≤ x1, ..., Xd ≤ xd)
for x = (x1, ..., xd) ∈ Rd, we see with (2.3) that

FX(x) = P

(
d⋂
i=1

{gi((Nk)k∈ANi
) ≤ xi}

)
= P(N ∈ A) = PN(A) (2.4)

where A = {(n1, ..., nd) ∈ Rd : ∀i ∈ {1, ..., d} gi((nk)k∈ANi
) ≤ xi}. Since the noise terms

N have a unique distribution PN, it follows, that they induce a unique joint distribution
PS

X among the Xi, independent of the particular solution for a fixed noise distribution.

The proof of Theorem 2.9 prescribes how we sample from PS
X: we use a draw from PN to

obtain the realizations of the Xi via the structural assignments fi starting with the sources
in the order the assignments specify. In this way the fi have a direction attached to them,
which is why we call them assignments. Furthermore, we will mostly omit the distinction
between different solutions from future discussions and pick any concrete random vector
to represent the ”almost sure” class of solutions.

Next, we discuss the existence of SCM’s given a joint distribution PX:

Theorem 2.10 (SCM From Observational Distribution).
Assuming the joint distribution PX has a density (wrt. Lebesgue measure as always as-
sumed) and is Markov with respect to G, there exists a SCM S with associated graph G
that entails PX, i.e. PS

X = PX.

For a proof see Peters et al. (2017)[p. 230].

With this result we can conclude that given an observational distribution (with density)
there is at least a SCM with a complete graph (any pair of nodes is connected) as asso-
ciated graph, as PX is trivially Markov with respect to the complete graph. With other
words: SCMs can generate any given observational distribution.

If, on the other hand, we start with a SCM, we automatically have

10



2 Foundations Of Statistical Causality

Theorem 2.11 (SCM Implies Markov).
For a SCM S with induced PS

X and associated graph G, we have that PS
X is Markov with

respect to G.

A proof is referenced in Peters et al. (2017)[p. 105].

Whenever we encounter two SCMs S1 = (S1,PN) and S2 = (S2,PN)(with assignments
f 1
i and f 2

i respectively) for modeling the causal structure of X such that

f 1
i (pai, ni) = f 2

i (pa∗i , ni) (2.5)

∀i,pai, ni with p(ni) > 0, where PA∗i ( PAi and thus pa∗i a projection of pai, we choose
the latter SCM with the minimal representation. This principle is called structural min-
imality of SCMs.

Modeling interventions, the central concept of our approach to causality, requires us to
deviate from the usual observational framework of ordinary joint distributions.

Definition 2.12 (Interventional distribution).
For the SCM S = (S,PN) we speak of an interventional SCM S̃ when replacing at
least one assignment, say for Xk, in S by

Xk :=as f̃k(P̃Ak, Ñk) (2.6)

where we require any Ñk to be jointly independent of the original noises N. Modifications
P̃Ak of the parents are only allowed if the associated graph of S̃ is still acyclic. In this
case, we say that we have intervened on Xk. The induced distribution of the new SCM
PS̃

X, that is the interventional distribution, is denoted

P
S;do(Xk:=f̃k(P̃Ak,Ñk))
X := PS̃

X
(2.7)

An atomic intervention consists of altered assignments of the form do(Xk := a) with
a ∈ R. If we don’t intervene with deterministic assignments, i.e. the marginal of Xk has
positive variance, we call the intervention stochastic.

Intervening and conditioning are two different concepts: If we consider for example a SCM
S with two variables

X1 := N1 ∼ N (0, 1)

X2 := X1 +N2, N2 ∼ N (0, 0.1)
(2.8)

we have for intervening on X2 with do(X2 := a) (a ∈ R) that the marginal distribution
of X1 reads

pS,do(X2:=a)(x1) = pS(x1) 6= pS(x1|X2 = a) (2.9)

With our interventional framework, we can now examine meaningful formalizations of the
essential notion of causality between two variables:

11



2 Foundations Of Statistical Causality

Definition 2.13 (Total Causal Effect).
For a SCM S we say there is a total causal effect from random variables X to Y if

X 6⊥⊥ Y in P
S;do(X:=ÑX)
X for some random variable ÑX

Luckily, this definition is equivalent to others, one could think of:

Theorem 2.14 (Total Causal Effect - Equivalencies).
Given a SCM S we have the equivalence of the following statements:

i) There is a total causal effect from X to Y

ii) There are x1, x2 ∈ R such that for the marginals of Y PS;do(X:=x1)
Y 6= PS;do(X:=x2)

Y

iii) There is x ∈ R such that for the marginals of Y PS;do(X:=x)
Y 6= PS

Y

iv) We have X 6⊥⊥ Y in P
S;do(X:=ÑX)
X for any random variable ÑX with a full support

distribution

A proof is given in Peters et al. (2017)[pp. 226].

For our definition of a causal effect we can state the following about the relation of this
concept to the associated graph:

Theorem 2.15 (Relation - Total Causal Effect to Graph).
Given a SCM S with associated graph G we have:

i) If there is no directed path from X to Y , then there is no total causal effect from X
to Y .

ii) There are cases, where there exists a directed path from X to Y , but no total causal
effect from X to Y .

For a proof see Peters et al. (2017)[pp. 228].

The notion of total causal effect is realized in the construction of randomized trials,
where we consider a target variable G and the randomization of a treatment variable
T by intervening on it with an independent variable T := ÑT (and thus removing any
hidden common cause of T and G). If we then observe a dependence between T and G, we
conclude by Definition 2.13 that there is a total causal effect from treatment T to target
G.

2.4 The Graphical Model (GM) And Its Connection To
The SCM

For this section see Peters et al. (2017)[ch. 6], Peters (2012)[ch. 2].

Often times in the relevant literature about causality not the SCM but (variants of)
another model are used:

Definition 2.16 (The Graphical Model).
A graphical model (GM) G = (G,PX) consists of a DAG G and a joint distribution
PX over the nodes/variables X, where PX has the Markov property with respect to G.
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2 Foundations Of Statistical Causality

Assuming the existence of a joint density, Theorem 2.10 states that for a given GM
G = (G,PX) there exists at least one SCM S = (S,PN), such that G is the associated
graph of S, which entails PX. On the other hand, given a SCM we automatically obtain
a unique GM by Definition 2.8 and Theorem 2.9. We conclude that every SCM can also
be seen as a GM, since that is the coarser model.

As the Markov property is required in the definition of a GM G = (G,PX), we arrive
under the assumption of a strictly positive, continuous joint density p(x1, ..., xd) at the
following situation: We have as a consequence of the Markov factorization property, that

p(x1, ..., xd) =
d∏
i=1

p(xi|paGi ) (2.10)

where the Markov kernels p(xi|paGi ) are all well-defined (conditional) densities, i.e. ∀i =
1, ..., d and given paGi ∈ R|PAi |: ∫

R
p(xi|paGi ) dxi = 1 (2.11)

Interventions in this model lead to an altered factorization. If we have interventions of
the form do

(
Xk := Ñk

)
, the joint density of the interventional distribution, denoted by

P
do(Xk:=Ñk)
X , becomes

pdo(Xk:=Ñk)(x1, ..., xd) =
∏
i 6=k

p(xi|paGi )× p(ñk) (2.12)

where p(ñk) is the density of the independent intervention noise variable Ñk.

For the interventional case, in order to access marginal, joint (i.e. the full interventional)
or conditional distributions other than the Markov kernels and thus answer ”causal ques-
tions”, we refer to Peters et al. (2017)[ch. 6.6, 6.7]. Here, several ways to obtain such
distributions of interest from observational marginals and intervention noise distributions
are presented, namely working with adjustment sets and Pearls do-calculus. Central is the
assumption of a known, fixed causal structure and the fact that the Markov kernels of
the variables that are not intervened on, p(xi|paGi ), i 6= k in (2.12), don’t change, which
is known e.g. as truncated factorization or the manipulation theorem.

Possessing such a ”causal inference machinery”, which is also explored by (Pearl, 2009),
for a fixed causal structure hence really motivates the pursuit of learning the latter.

2.5 Causal Structure Learning

For this section see Peters et al. (2017)[ch. 7], and e.g. Heinze-Deml et al. (2018) for a
recent survey.
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2 Foundations Of Statistical Causality

We can falsify a given causal structure (i.e. a model that is solely GM or SCM) by recog-
nizing that the entailed observational and interventional distributions do not agree with
data from the underlying data generating process (see Peters et al. (2017)[ch. 6.8]).

In order to actually learn the causal structure, multiple approaches have been proposed
over the last decades, which include the large group of independence-based methods uti-
lizing tests of conditional independencies and the connection via the results of Section 2.2
to the underlying graph. Another class can be described as score-based methods, which
employ a scoring criterion in order to find the best scoring causal structure, which can
effectively be equivalent to performing conditional independence tests (see e.g. Nandy
et al. (2018)[p. 3163]). In this thesis, we will operate in the latter group of algorithms.

These techniques have various input conditions with respect to the type of data: e.g.
algorithms for purely observational vs. those for observational and interventional data.
Again, the latter setting is relevant for our considerations.
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3 Gaussian Process Regression

In order to choose a flexible method to model the functions in the SCM setting we go
beyond the standard assumptions of e.g. linear dependencies, which are often found in
typical approaches (see e.g. references of Section 2.5), by employing Gaussian process re-
gression (GPR). We will now introduce this slightly unconventional regression technique,
which requires us to deal with Bayesian methods as GPR is a Bayesian non-parametric
procedure.

For this chapter we adapt the notation of Rasmussen and Williams (2006): Assume that
we have input (or predictor) random variables Xi with i = 1, ..., D collected in random
vector X and one output (or response) random variable Y , taking values in RD and R.
We call x̄ the D× n design matrix gathering the real-valued realizations of X from n iid.
samples from PX,Y , which also yield ȳ, the real-valued n-dimensional vector of realizations
of Y . Further, we denote the collection of realizations of X and y in density/likelihood
functions by writing the matrix and vector x̄ and ȳ respectively.

3.1 Basis Functions As Starting Point

For this section see Rasmussen and Williams (2006)[ch. 2, 4], Steinwart and Christmann
(2008)[pp. 111], Kanagawa et al. (2018)[p. 7].

We consider a Bayesian regression model with additive Gaussian noise ε ∼ N (0, σ2),
σ2 ∈ R+, of the form

y = f(x) + ε, f(x) = φ(x)Tw (3.1)

with x ∈ RD, y ∈ R, weights w ∈ RN and a map φ : RD → RN into the feature
space containing a finite number (N) of basis functions, e.g. for D = 1, polynomials:
φ(x) = (1, x, x2, x3, x4), i.e. N = 5, which can but don’t need to be linear unlike the usage
of the weights w in f .

As we model a deterministic function f , we can calculate with the Gaussian noise as-
sumption for the n iid. samples due to the independence that

p(ȳ|x̄,w) = N
(
ȳ|Φ(x̄)Tw, σ2 I

)
(3.2)

where Φ(x̄) is the N×n matrix consisting of columns φ
(
x(j)
)

with x(j) being the columns
of x̄, j = 1, ..., n, i.e. the n samples of X.
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3 Gaussian Process Regression

In a Bayesian context we now set a prior over the parameters, which in this case are the
weights: p(w) = N (0,Σp). By Bayes’ rule we can now compute the posterior distribution:

p (w|ȳ, x̄) =
p(ȳ|x̄,w)p(w)

p(ȳ|x̄)
(3.3)

with the normalizing constant p(ȳ|x̄) =
∫
p(ȳ|x̄,w)p(w)dw. The posterior can be deter-

mined analytically without the need to compute the previous integral by calculating the
product of multivariate normal likelihood and prior and matching the distribution. We
obtain the exact posterior distribution

p (w|ȳ, x̄) = N
(

w| 1

σ2
A−1Φ(x̄)ȳ, A−1

)
(3.4)

where A = 1
σ2 Φ(x̄)Φ(x̄)T + Σ−1

p .

If we now consider the (x̄, ȳ) as training samples and further recognize test samples x̄∗,
the posterior predictive distribution with f̄∗ being the prediction values for f(x̄∗) is

p
(
f̄∗|x̄∗, x̄, ȳ

)
=

∫
p
(
f̄∗|x̄∗,w

)
p (w|x̄, ȳ) dw

= N
(
f̄∗|

1

σ2
Φ(x̄∗)

TA−1Φ(x̄)ȳ,Φ(x̄∗)
TA−1Φ(x̄∗)

)
= N

(
f̄∗|ΦT

∗ΣpΦ(K + σ2 I)−1ȳ,ΦT
∗ΣpΦ∗ − ΦT

∗ΣpΦ(K + σ2 I)−1ΦTΣpΦ∗
) (3.5)

where Φ(x̄∗) = Φ∗, Φ(x̄) = Φ and K = ΦTΣpΦ (see Rasmussen and Williams (2006)[pp.
9] for algebaric details).

We see that the feature maps φ only appear in terms of the sort ΦTΣpΦ, ΦT
∗ΣpΦ (and

ΦTΣpΦ∗) or ΦT
∗ΣpΦ∗. Any entry of such matrices can be written in the form k(x,x′) :=

φ(x)Σpφ(x′), where x,x′ are training or test values. We call k(·, ·) the kernel function
in our regression setting. Since Σp is positive definite as covariance matrix of a multi-
variate Gaussian with density, i.e. vTΣpv > 0 for all v 6= 0,v ∈ RN , we can define a

matrix Σ
1/2
p (e.g. via the singular value decomposition), such that (Σ

1/2
p )2 = Σp. Thus,

with ψ(x) = Σ
1/2
p φ(x), we have k(x,x′) = ψ(x) ·ψ(x′), i.e. an inner product in the feature

space, justifying the name kernel (see Steinwart and Christmann (2008)[p. 112]).

If we can directly access this kernel function and replace all the computations of inner
products in the feature space by an expression of k(x,x′) in closed form, we apply the
kernel trick. In our case this allows us to take advantage of an infinite number of basis

functions. Say, for example, we choose Σp = σ2
p I and basis functions φc(x) = exp

(
− (x−c)2

2l2

)
(D = 1, l ∈ R+, σ2

p > 0). This leads to a kernel function

kfinite(x, x
′) = σ2

p

N∑
c=1

φc(x)φc(x
′) (3.6)
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3 Gaussian Process Regression

After slightly modifying the scaling and two limiting procedures (one of which is N →∞,
for details see Rasmussen and Williams (2006)[pp. 83], MacKay (1998)[pp. 8]) we get a
kernel (x, x′ ∈ R)

k(x, x′) =
√
πlσ2

p exp

(
−(x− x′)2

2(
√

2l)2

)
(3.7)

which is a rescaled version of what we will define as the squared exponential kernel. In fact,
by Mercer’s theorem, we can identify every given positive definite kernel function, which
is defined below, under mild conditions with a (maybe infinite) series of basis functions
(see e.g. Minh et al. (2006)).

Definition 3.1 (Positive Definite Kernel Function).
A symmetric function k : X × X → R (i.e. we have ∀x, x′ ∈ X k(x, x′) = k(x′, x)) for
some nonempty set X is called positive definite kernel, if ∀n ∈ N, (c1, ..., cn) ∈ Rn,
(x(1), ..., x(n)) ∈ X n

n∑
i=1

n∑
j=1

cicjk(x(i), x(j)) ≥ 0 (3.8)

Further, we call k strictly positive definite kernel, if for mutually distinct x(1), ..., x(n) ∈
X we have equality in (3.8) only for c1 = ... = cn = 0.

We call the n × n matrix K :=
(
k(x(i), x(j))

)
i,j

for fixed x(1), ..., x(n) ∈ X the Gram

matrix. A positive definite kernel leads to a positive semi-definite Gram matrix, i.e.
vTKv ≥ 0 for all v 6= 0,v ∈ RN , and a strictly positive definite kernel by the same
arguments to a positive definite K.

An example for a positive definite kernel is the already mentioned squared exponential
kernel (with length scale γ ∈ R+, x,x′ ∈ RD)

kse(x,x
′) = exp

(
−||x− x′||22

γ2

)
(3.9)

(see e.g. Steinwart and Christmann (2008)[pp. 116]). Since for mutually distinct x(1), ...,x(n) ∈
RD we have kse(x

(i),x(j)) > 0 for i, j ∈ {1, ..., n} the squared exponential kernel even is
strictly positive definite. By the previous considerations, we thus have a positive definite
Gram matrix Kse from the squared exponential kernel.

3.2 The Distributed Functions View

For this section see Rasmussen and Williams (2006)[ch. 2], Kuss (2006)[ch. 3], Kanagawa
et al. (2018)[pp. 7], Seeger (2004).

The essential idea of Gaussian process regression is the application of stochastic processes
in regression tasks.
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3 Gaussian Process Regression

Definition 3.2 (Stochastic Process).
A (real valued) stochastic process is a function f : X × Ω → R mapping a state
x ∈ X (nonempty set) and an outcome ω ∈ Ω to a real number, such that for every
fixed x ∈ X : f(x, ·) is a measurable function, i.e. a random variable on Ω. For a fixed
realization ω ∈ Ω we call f(·, ω) a sample path.

The states x are often identified with points in time. Yet in the GPR view we identify
them with points in our general input space x ∈ RD. Then for the random variable f(x)
we consider the value of the mean function

m(x) = E[f(x)] (3.10)

and for the two random variables f(x), f(x′) we consider the value of the covariance
function

k(x,x′) = E[(f(x)−m(x))(f(x′)−m(x′))] (3.11)

a measure of similarity between two points, which is a positive definite kernel (see Seeger
(2004))[p. 73] and can be associated with the kernel function of the regression setting of
the previous section (w ∼ N (0,Σp)) by computing the covariance:

E[f(x)f(x′)] = φ(x)TE[wwT ]φ(x′) = φ(x)TΣpφ(x′) (3.12)

Together with the mean E[f(x)] = φ(x)TE[w] = 0 we already have a characterization of
a Gaussian process, which we can now define as the central object of this chapter in the
(for us relevant) setting of real numbers:

Definition 3.3 (Gaussian Process).
A Gaussian process is a stochastic process f with mean function m : RD → R and
covariance function k : RD × RD → R denoted f ∼ GP(m, k) such that for any finite
collection represented by a matrix x̄ = (x(1), ...,x(n)) ∈ RD×n with n ∈ N the random
vector with values ∈ Rn

fx̄ = (f(x(1)), ..., f(x(n)))T ∼ N (mx̄, Kx̄,x̄) (3.13)

where the multivariate normal distribution N (mx̄, Kx̄,x̄) is determined by mean vector
mx̄ = (m(x(1)), ...,m(x(n)))T and n× n covariance matrix Kx̄,x̄ = (kx̄(i),x̄(j))i,j.

Reversely, for a given function m : RD → R and positive definite kernel function k :
RD × RD → R there exists a unique corresponding Gaussian process f ∼ GP(m, k),
i.e. a pair (m, k) exactly identifies a Gaussian process (one-to-one correspondence) (see
Kanagawa et al. (2018)[p. 9]). Note, that the covariance matrix Kx̄,x̄ relates to the Gram
matrix of the previous section.

As already declared, we will use a Bayesian framework to utilize the definition of Gaussian
processes for our purpose of regression. Therefore, we think of (3.13) as a prior belief: Given
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some (test) data on the input side x̄∗ ∈ RD×n∗ consisting of n∗ data points, we assume a
prior distribution of

fx̄∗ ∼ N (mx̄∗ , Kx̄∗,x̄∗) (3.14)

i.e. a sample from this multivariate normal distribution yields the values of the respective
sample path of this Gaussian process prior at the input points x̄∗.

For a data set split in training and test values on the input side we have n input training
values x̄ ∈ RD×n and n∗ input test values x̄∗ ∈ RD×n∗ .

In a noise free framework, i.e. we assume that observed function values are not disturbed
by any noise, i.e. we consider a regression setting y = f(x) with y ∈ R, x ∈ RD. Thus,
we have n training inputs x(i) ∈ RD and a prior given data x̄, x̄∗ (assuming a zero-mean
prior belief)

fx̄, fx̄∗|x̄, x̄∗ ∼ N

0,

 Kx̄,x̄ Kx̄,x̄∗

Kx̄∗,x̄ Kx̄∗,x̄∗

 (3.15)

In order to predict the function values at the test points, we need to access the posterior
predictive distribution as in the previous section. Luckily, as we are working with
multivariate normals, we can utilize their convenient calculus (for algebraic details see
Rasmussen and Williams (2006)[p. 16], fx̄ ∈ Rn):

fx̄∗ |x̄, fx̄, x̄∗ ∼ N
(
Kx̄∗,x̄K

−1
x̄,x̄fx̄, Kx̄∗,x̄∗ −Kx̄∗,x̄K

−1
x̄,x̄Kx̄,x̄∗

)
(3.16)

In a noisy framework, i.e. assuming the regression setting y = f(x) + ε, with additive iid.
Gaussian noise ε ∼ N (0, σ2) and y ∈ R, x ∈ RD, we have n training inputs x(i) ∈ RD,
the response random vector Y = fx̄ + (ε1, ..., εn)T and a prior given data x̄, x̄∗ (assuming
a zero-mean prior belief) Y

fx̄∗

 ∼ N
0,

 Kx̄,x̄ + σ2 I Kx̄,x̄∗

Kx̄∗,x̄ Kx̄∗,x̄∗

 (3.17)

where we have Y ∼ N (0, Kx̄,x̄ +σ2 I) because the covariance for single outputs yp, yq from
y reads

E[(f(xp) + ε)(f(xq) + ε)] = cov[f(xp), f(xq] + cov[ε, ε] = k(xp,xq) + σ2δpq (3.18)

due to the iid. assumption on the noises and with the Kronecker delta δpq. Again, we have
a closed form expression of the posterior predictive distribution

fx̄∗|x̄,y, x̄∗ ∼
N
(
Kx̄∗,x̄(Kx̄,x̄ + σ2 I)−1y, Kx̄∗,x̄∗ −Kx̄∗,x̄(Kx̄,x̄ + σ2 I)−1Kx̄,x̄∗

) (3.19)
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3 Gaussian Process Regression

which corresponds to (3.5) for the specific choice of covariance/kernel function in the pre-
voius section.

In this noisy setting we introduce the (logarithmic) marginal likelihood derived from
the full GP prior by marginalization

log p(y|x̄) = −1

2
yT (Kx̄,x̄ + σ2 I)−1y− 1

2
log det(Kx̄,x̄ + σ2 I)− n

2
log(2π) (3.20)

which is particularly relevant for the next section.

3.3 Learning The Gaussian Process Regression Model

For this section see Rasmussen and Williams (2006)[ch. 2,5].

In principle, given an estimate of σ2 in the noisy case, we could apply Gaussian process
regression by sampling from the appropriate distributions of the preceding section with
a kernel of fixed form associated with our prior belief about the functional shape. In
practice, however, we can improve on the fitting capabilities of our regression method
by learning kernel hyperparameters, i.e. free parameters within the kernel/covariance
function as for example the length scale in the squared exponential kernel (3.9).

The term hyperparameter stresses the reality that we are in fact not dealing with regular
parameters in the sense of common regression models of type (3.1) as we saw that the
correspondence of these models with GPR contains the integration over the regular pa-
rameters (i.e. the weights) in the Bayesian framework (3.5) and GP kernels might even
coincide with an infinite number of basis function and thus parameters. Therefore, GP
models are sometimes called infinite dimensional and non-parametric. From now on we
will also include the noise σ2 in the collection of hyperparameters θ ∈ Θ we want to learn,
which for the example of the simple squared exponential kernel with only the length scale
as kernel hyperparameter θk = γ would then be θ = (σ2,θk) = (σ2, γ) ∈ R+ × R+.

From a Bayesian perspective we enter this learning or model selection procedure in the
case of our GP setting at level 2, as the first level concerns the Bayesian update of the
regular parameters or weights from our early regression setting (3.1), which we don’t have
to deal with directly precisely because of our Gaussian process kernel method.

Continuing with the notation of the previous section, we have at level 2 the marginal
likelihood p(y|x̄,θ) conditioned on the hyperparameters. Further, we need to define a
”hyper prior” on the hyperparameters p(θ), Then Bayes’ rule yields for the posterior over
hyerparameters

p(θ|y, x̄) =
p(y|x̄,θ)p(θ)∫
p(y|x̄,θ)p(θ) dθ

(3.21)

If a finite set of models {M1, ...,ML} is considered, which could for example represent
the application of various kernels, we can advance to level 3 by conditioning any density
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in level 2 onMl, l ∈ 1, ..., L and compute the posterior over models p(Ml|y, x̄) by Bayes’
rule as well.

In practice the integration in (3.21) can often only be done numerically. To avoid the
downsides of that as well as the choice of hyper priors, the hyperparameters are often
estimated by the maximum likelihood method utilizing the marginal likelihood (3.20), i.e.

θ̂ = arg max
θ∈Θ

pθ(y|x̄) (3.22)

This can either be seen as a maximum a posteriori (MAP) estimate with flat prior of the
Bayesian update (3.21) in level 2, in which case we speak of type II maximum likelihood
estimation or we leave the Bayesian view and justify our estimation as simple application of
the maximum likelihood method. In either case we should keep in mind that the possibility
of overfitting exists. The choice of maximum likelihood is further supported by the fact
that the derivatives for the objective function wrt. all hyperparameters can be calculated,
which is beneficial for the optimization procedure using versions of gradient descent.

3.4 Dealing With Higher Input Dimensions

For this section see Duvenaud et al. (2011), Rasmussen and Williams (2006)[ch. 5].

The question of how to construct a kernel for multiple dimensions can be answered in dif-
ferent ways, eg. directly with a multidimensional squared exponential kernel (3.9). In order
to generalize this approach as well as regression models withD inputs of GAM(Generalized
Additive Model)-form, i.e. the response is computed from a sum of functions f1(x1)+ ...+
fD(xD), we concentrate in this thesis on the relatively new method of additive Gaus-
sian processes by Duvenaud et al. (2011), which they have shown to be competitive in
practice among various alternatives.

We define a one dimensional (xq, x
′
q ∈ R) base kernel kq(xq, x

′
q), which could be for

example squared exponential, and with that consider an r-th order additive kernel
(r ∈ {1, ..., D}, x,x′ ∈ RD)

kaddr(x,x
′) = σ2

r

∑
1≤s1<...<sr≤D

(
r∏
t=1

kst(xst , x
′
st)

)
(3.23)

with additional hyperparameter σ2
r > 0 measuring the influence of the r-th order interac-

tion. The full additive kernel is then merely the sum over the additive kernels of all orders
up to a highest order of our choice. If we only choose to consider the 1-st order we recover
a GAM. The computations don’t interfere with properties of (strictly) positive definitness
of a given base kernel for the new full additive kernel and we can still calculate derivatives
wrt. all hyperparameters for the optimization in maximum likelihood schemes.
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3.5 Advantages Of GPR For Our Setting

For this section see Duvenaud (2014)[pp. 4].

A commonly known downside of GPR is the need to deal with the inversion of matrices
that scale with the number of samples (see e.g. covariance matrix in (3.20)). As long as
we are in a situation of few samples however, we can truly take advantage of the benefits
of GPR such as the large expressive capability geared toward highly nonlinear functions
and all the leverage we gain by dealing with (multivariate) normal distributions, which in
our case leads to easily computable estimates of conditional distributions as we will see
in the next chapter.
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4 The Gaussian Process SCM
(GP-SCM)

We build on the groundwork of von Kügelgen et al. (2019) and thus indirectly Friedman
and Nachman (2013).

4.1 The GP-SCM Model

In this chapter we merge results of the two previous chapters by examining the use of
Gaussian process regression to model the structural equations among the variables in the
SCM (2.8). The following definition is similar to one defining the same term by Karimi
et al. (2020)[pp. 4]:

Definition 4.1 (The Gaussian Process SCM (GP-SCM)).
A Gaussian process SCM SGP = (S, f) consists of an underlying SCM S with fixed,
deterministic, yet unknown assignments in the included structural equations of the form

Si : xi := fui (pai) + ni

Xi :=as f
u
i (PAi) +Ni

(4.1)

with additive noise variables Ni. Further we have an independent collection f = (f1, ..., fn),
where the Gaussian process fi has a prior fi ∼ GP(0, ki) and Ni ∼ N (0, σ2

i ) representing
the additive noise in the GPR setting if Xi is not a source in the associated graph G. Else,
for the sources we have fi ≡ 0 and random variables Ni with some density p(ni).

By modeling the unknown functions fui with fi, i.e. the non-parametric method of GPR,
we need data from the variables X in order to sensibly use the GP-SCM as laid out in
the next section.

4.1.1 Inference Given A GP-SCM

Consider a non-source node Xi with Di parents PAi and j = 1, ..., n realizations collected
in xi ∈ Rn and p̄ai ∈ RDi×n and a strictly positive definite kernel k. With m given test
values p̄ai∗ ∈ RDi×m we have a joint GP prior of

p(xi,xi∗) = N

 xi

xi∗
0,

 Kp̄ai,p̄ai
+ σ2

i I Kp̄ai,p̄ai∗

Kp̄ai∗,p̄ai
Kp̄ai∗,p̄ai∗

+ σ2
i I

 (4.2)
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4 The Gaussian Process SCM (GP-SCM)

for xi and xi∗, which differs from (3.17) in the lower right corner of the covariance matrix
as we look at the test prediction of the variable Xi not only the function prediction, so by
the argument of (3.18) we get (4.2). Further by (3.19), this yields the conditional density

p(xi∗|p̄ai,xi, p̄ai∗) =N (xi∗|Kp̄ai∗,p̄ai
(Kp̄ai,p̄ai

+ σ2
i I)−1xi,

Kp̄ai∗,p̄ai∗
+ σ2

i I−Kp̄ai∗,p̄ai
(Kp̄ai,p̄ai

+ σ2
i I)−1Kp̄ai,p̄ai∗

)
(4.3)

If we want to sample from a known structure with fixed graph, source densities and GP
kernels including the variances σi, these conditional densities together with the densities
of the sources nodes p(ni) model the Markov kernels (conditioned on data p̄ai,xi) - i.e.
for sample size 1 (xi∗ ∈ R, pai∗ ∈ RDi)

p̂(xi∗|pai∗) = p(xi∗|p̄ai,xi,pai∗) (4.4)

- in the Markov factorization, which exists due to the underlying SCM S, which also dic-
tates the sampling hierarchy as described in Section 2.3. As we have the associated graph
G and access to the full joint distribution via (4.4), which yields an estimated full joint
distribution P̂X, as well as the Markov property stemming from the Markov factorization
we can treat (G, P̂X) as graphical model.

Apart from that, we can also sample the learned GP’s fi or alternatively take the mean
at a certain number of test points, i.e. a resolution, and interpolate the function values
between these knots in order to gain deterministic estimates of the latent fui . Then we
have a normal SCM according to the first definition 2.8 and all results for SCM obviously
hold.

4.1.2 Learning The True GP-SCM

We assume there is a true mechanism that generates the data, i.e. we assume an under-
lying true SCM St giving rise to the true joint distribution PX with associated true
graph Gt. We want to find a true GP-SCM SGP = (St, f) with the underlying true
SCM modeled using the Gaussian processes f and associated true graph Gt.

Given data from the true joint distribution PX (and possibly interventional distributions
stemming from that) and considering a set of possible graphs G including the true graph
Gt ∈ G, this task turns into estimating the true graph Gt and simultaneously modeling
the latent functional dependencies as described by our estimate Ĝt with GPR. We thus
deal with graphical models (G,PX).

For the definition of a likelihood score over an entire fixed graph structure G ∈ G and
simultaneously learning the GPR models fi as described in Section 3.3 we use the marginal
likelihoods under the GP prior

p̂(xi|p̄ai
G) = N

(
xi|0, Kp̄ai

G ,p̄ai
G + σ2

i I
)

(4.5)

as further discussed in the next Section 4.2.
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4 The Gaussian Process SCM (GP-SCM)

4.2 Computing A Likelihood Score Given Structure

The full graph likelihood derived from the Markov factorization for n iid. samples of the
variables X

(j)
i from the observational joint distribution PX, j = 1, ..., n reads

LGobs =
n∏
j=1

d∏
i=1

p(x
(j)
i |pa

(j),G
i ) (4.6)

where x
(j)
i ∈ R, pa

(j),G
i ∈ RD.

If we have data from different intervention scenarios for interventions of assigning inde-
pendent random ”noise” variables Ñk

il
with densities p(ñ

(k)
il

) to a subset of variables, where
we denote Ik = {il, l = 1, ..., Lk} as the index set of variables intervened on in the kth of
K interventions in total each realized with nk samples of the form

X
(k,j)
i ∼ P

do
(
Xil

:=Ñk
il

;Xil
∈Ik

)
Xi

(4.7)

generated from the joint density of the respective interventional distribution with respec-
tive parents PA

(k,j)
i . Set always I0 = ∅, i.e. we have observational data stemming from

PX. In total we have data

D = ((X
(k,j)
1 , ..., X

(k,j)
d ); j = 1, ..., n; k = 0, ..., K) ∼

K⊗
k=0

nk⊗
j=1

P
do(Xil

:=Ñil
;Xil
∈Ik)

X (4.8)

By multiplying the likelihoods - see Eaton and Murphy (2007)[p. 2] for a way to still
speak of a ”real” likelihood by using special intervention nodes to condense the various
interventional distributions into one distribution with the same result as here, i.e. we
multiply the different likelihoods - from the various interventional distributions we get a
total likelihood score on the level of single samples as in (4.6)

LG =
K∏
k=0

nk∏
j=1

∏
i/∈Ik

p(x
(k,j)
i |pa

(k,j),G
i )×

∏
i∈Ik

p(ñ
(k,j)
i )

 (4.9)

If we re-arrange the product above and group not by interventions but variables on the
highest level, we get

LG =

 d∏
i=1

∏
k: i/∈Ik

nk∏
j=1

p(x
(k,j)
i |pa

(k,j),G
i )

×( d∏
i=1

∏
k: i∈Ik

nk∏
j=1

p(ñ
(k,j)
i )

)
(4.10)

The right-hand factor as likelihood based on densities of our chosen intervention noises
doesn’t matter for our purpose of scoring a graph structure along with any associated
parameters θ, neither of which the factor depends on.
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4 The Gaussian Process SCM (GP-SCM)

For the left hand factor above, from now on denoted as LSG, we have the product over
all variables of

LSGi =
∏
k: i/∈Ik

nk∏
j=1

p(x
(k,j)
i |pa

(k,j),G
i ) (4.11)

For (4.11) we adopt a term of Koller and Friedman (2009)[pp. 723]: local likelihood, i.e.
a function representing the ”prediction quality” of the variable given its parents. We aim
to model these local likelihoods in the case of Xi not being a source with the GP marginal
likelihoods:

LSGi =
∏
k: i/∈Ik

nk∏
j=1

p(x
(k,j)
i ,pa

(k,j),G
i )

p(x
(k,j)
i )

=

∏
k: i/∈Ik

∏nk

j=1 p(x
(k,j)
i ,pa

(k,j),G
i )∏

k: i/∈Ik

∏nk

j=1 p(x
(k,j)
i )

=
p(xi, p̄ai

G)

p(xi)
= p(xi|p̄ai

G)

(4.12)

and under the GP prior assumption we model

p̂(xi|p̄ai
G) = N

(
0, Kp̄ai

G ,p̄ai
G + σ2

i I
)

(4.13)

where we collect data out- x
(k,j)
i and inputs pa

(k,j),G
i for the correct indices (k, j) in xi

and p̄ai
G respectively. Equation (4.12) is justified through the independence assumption

on the samples in an almost everywhere sense with respect to the product measure of all
samples (see e.g. Schmidt (2011)[p. 310]).

For modeling the likelihood of the source nodes von Kügelgen et al. (2019)[p. 5] propose
simple normal or more expressive distributions. In Section 4.4 We will separate the estima-
tion of distributions on the sources from graph and GPR estimation for the non-sources.

4.3 Learning The GP-SCM In A Bayesian Way

For this section see Heckerman et al. (1999), Peters et al. (2017)[pp. 149], Rasmussen and
Williams (2006)[pp. 18], von Kügelgen et al. (2019).

We now explore a Bayesian approach to learning the GP-SCM as graphical model (similar
to von Kügelgen et al. (2019) without the intervention choice scheme). Observing data D
as in (4.8) and considering multiple possible graph structures G = {G1, ...,GM} for a given
graphical model Gm = (Gm,PX) we define a Bayesian score with a posterior density

p(Gm|D) =
p(D|Gm)p(Gm)∑M
m=1 p(D|Gm)p(Gm)

(4.14)

where we have some graph priors p(Gm) (= 1/M for no prior knowledge) and graph
marginal likelihoods p(D|Gm), which due to the Markov factorization in the GP-SCM as
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4 The Gaussian Process SCM (GP-SCM)

graphical model (4.10) compute with the application of atomic interventions (see Defini-
tion 2.12) with xi and p̄ai

Gm as in the previous section as

p(D|Gm) = LGm =
d∏
i=1

∏
k: i/∈Ik

nk∏
j=1

p(x
(k,j)
i |pa

(k,j),Gm
i ) =

d∏
i=1

p(xi|p̄ai
Gm)

=
∏

i/∈SOGm

∫
p(xi|fp̄ai

Gm , p̄ai
Gm) p(fp̄ai

Gm |p̄ai
Gm) dfp̄ai

Gm ×
∏

i∈SOGm

p(xi)

=
∏

i/∈SOGm

N
(
xi|0, Kp̄ai

Gm ,p̄ai
Gm + σ2

i I
)
×

∏
i∈SOGm

p(xi)

(4.15)

with fp̄ai
Gm corresponding to the random vector of function values (3.13) at p̄ai

Gm and
for likelihood and GP prior

p(xi|fp̄ai
Gm , p̄ai

Gm) = N
(
xi|fp̄ai

Gm , σ2
i I
)

p(fp̄ai
Gm |p̄ai

Gm) = N
(
fp̄ai

Gm |0, Kp̄ai
Gm ,p̄ai

Gm

) (4.16)

(see Rasmussen and Williams (2006)[p. 19]).

For the sources the single likelihoods p(xi) can be modeled in some arbitrary, suitable
fashion. The parameters stemming from these likelihoods as well as the hyperparameters
from the normal GP likelihoods in (4.15) are all collected in θGm such that we have for a
lower level in Bayesian model selection

p(D|Gm) =

∫
p(D|θGm ,Gm) p(θGm|Gm) dθGm (4.17)

with some parameter prior distribution p(θGm|Gm) and parameter dependent likelihoods

p(D|θGm ,Gm) =
∏

i/∈SOGm

N
(
xi|0, Kp̄ai

Gm ,p̄ai
Gm ,θGm

+ σ2
i,θGm

I
)
×

∏
i∈SOGm

pθGm (xi) (4.18)

Using the ML-II approach (Section 3.3) we avoid the integration in (4.17) with MAP
assuming flat priors p(θGm |Gm).

When we apply this Bayesian score (4.14) in simulations under the small data paradigm
we can observe that the graph proposed by the score tends to favor more connections
(edges) than the true graph features if we choose a method for the source likelihoods that
has a low fitting capacity (e.g. simple univariate normal distributions) with GPR for the
non-sources being a rather flexible technique.

If we have for example the situation of two variables and look at two graphs along with
the respective (Markov) factorizations of the observational joint distribution

G1 : X → Y p(x, y) = p(x)p(y|x)

G2 : X |= Y p(x, y) = p(x)p(y)
(4.19)
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4 The Gaussian Process SCM (GP-SCM)

we see that if the first graph is the true graph, the respective likelihoods (4.15) differ based
on modeling p(y|x) vs modeling p(y) - also in any interventional situation: for intervening
on Y we model p(x) in both cases and intervening on X we again differ in modeling p(y|x)
vs p(y). These are different tasks which can be fulfilled with various degrees of quality:
Choosing a highly adaptive method for modeling p(y|x) and some restrictive technique
for the sources will yield a different result than vice versa.

Furthermore, we need to recognize the dependence on prior assumptions in Bayesian
modeling, that is our choices of modeling the non-sources with GPR and the sources in
some other way constitute beliefs that influence the posterior outcome of the Bayesian
prediction. As the definition of adequate prior beliefs seems to be difficult in this scenario
and to further our understanding of how we learn form interventions, we decide go in the
direction of an alternative score that utilizes the interventions in a direct manner.

4.4 An Alternative Approach To Learning The GP-SCM

We adopt the notation of the previous sections including data D as in (4.8) and the setting
of k interventions Ik using independent random variables.

The question of how exactly algorithms utilize interventions in order to discover causal
structure in a framework that is (at least somewhat) universally applicable is hard to
answer after the study of relevant literature. Mostly, interventional data is exploited in an
implicit way such as in our Bayesian score of the previous section or questions of experi-
mental design are answered, which, as von Kügelgen et al. (2019)[p. 5] already remark in
their paper, stay on the distribution level and tend to neglect the interplay of experiment
and algorithm. With our alternative approach, however, we want to start thinking about
the former question of how interventions aid the causal discovery.

First, we now turn our attention to a special relationship the true graph has with the
Markov factorization or, more precisely, its Markov kernels:

Theorem 4.2 (Only True Graph Certainly Retains Markov Kernels).
For the true graph G = Gt we have for any intervention k with i /∈ Ik and for any
j = 1, ..., nk that the conditional density of X

(k,j)
i given PA

(k,j),G
i = pa

(k,j),G
i

p
(
x

(k,j)
i |pa

(k,j),G
i

)
= p

(
x

(0,j)
i |pa

(0,j),G
i

)
(4.20)

pointwise (i.e. for x
(k,j)
i = x

(0,j)
i ∈ R and pa

(k,j),G
i = pa

(0,j),G
i ∈ RDi), i.e. it is pointwise

equal to the conditional density of X
(0,j)
i given PA

(0,j),G
i = pa

(0,j),G
i , and furthermore that

X
(k,j)
i is independent of none of its parents PA

(k,j),G
i . For any other graph G 6= Gt this

doesn’t hold in general.

Proof. For the case G = Gt we recognize that we obtain our observational samples (k = 0)

(X
(0,j)
1 , ..., X

(0,j)
d )T ∼ PX for any j = 1, ..., n0 with the hierarchical procedure of generating

samples according to the true SCM St (see Section 2.8, Theorem 2.9) with associated true
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4 The Gaussian Process SCM (GP-SCM)

graph Gt. Considering an intervention (k > 0) we have the analogous procedure for the
respective interventional true SCM S̃t, i.e. the altered true SCM for the executed inter-
vention. Hence, we always have that in the hierarchical sample generation we can sample
noises of the jointly independent PN and intervention noises PÑ earlier that need to be
realized first by the given (graph) hierarchy. Therefore, we can observe a situation in the

generation process with AN
(k,j),Gt
i and thus PA

(k,j),Gt
i realized but X

(k,j)
i (i.e. its respective

noise N
(k,j)
i ) not yet realized. For k : i /∈ Ik we now have, given PA

(k,j),Gt
i = pa

(k,j),Gt
i ,

that (4.20) holds as the respective Markov kernel did not change. Additionally, X
(k,j)
i is

never independent of any parent PA
(k,j),Gt
i by structural minimality, i.e. we speak of ”real”

parents in the ground truth situation.

For any other graph structure G 6= Gt, we are in at least one of three situations

(A) Gt has an edge (vp, vq) that G doesn’t have and neither its reverse
(B) G has an edge (vp, vq) that Gt doesn’t have and neither its reverse
(C) there exists an edge (vq, vp) in Gt and (vp, vq) in G

We select one of these situations and an intervention ks such that we intervene on Xp

in our usual style assigning independent noise Ñks

p , i.e. p ∈ Iks . True SCM and graph
dictate our calculations. The statement of the theorem is then proven with the respective
counterexamples in Example 4.3.

Example 4.3. For a situation of two variables X1, X2 we have the following concrete
counterexamples for graphs G 6= Gt in the previous Theorem 4.2:

(A) For the two graphs with respective observational joint densities (any sample j)

Gt : X1 → X2 pGt(x
(0,j)
1 , x

(0,j)
2 ) = p(x

(0,j)
1 )p(x

(0,j)
2 |x(0,j)

1 )

G : X1 |= X2 pG(x
(0,j)
1 , x

(0,j)
2 ) = p(x

(0,j)
1 )p(x

(0,j)
2 )

(4.21)

If we intervene in the ks-th intervention on X1, Iks = {1}, with X1 := Ñks

1 leading
to the following respective interventional joint densities

Gt : p
do(X1:=Ñks

1 )
Gt (x

(ks,j)
1 , x

(ks,j)
2 ) = p(ñ

(ks,j)
1 )p(x

(ks,j)
2 |ñ(ks,j)

1 )

G : p
do(X1:=Ñks

1 )
G (x

(ks,j)
1 , x

(ks,j)
2 ) = p(ñ

(ks,j)
1 )p(x

(ks,j)
2 )

(4.22)

As we actually sample from the true graph Gt (via hierarchical sampling with the true

SCM), we see that we can quite easily construct a case, where p(x
(ks,j)
2 ) 6= p(x

(0,j)
2 ):

if e.g. X1 ∼ N (0, 3), X2 := X1 + N (0, 1), we have choosing an intervention

X1 := Ñks

1 ∼ N (2, 4) that p(x
(ks,j)
2 ) = N (2, 5) 6= N (0, 4) = p(x

(0,j)
2 ).
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4 The Gaussian Process SCM (GP-SCM)

(B) For the two graphs with respective observational joint densities (any sample j)

Gt : X1 |= X2 pGt(x
(0,j)
1 , x

(0,j)
2 ) = p(x

(0,j)
1 )p(x

(0,j)
2 )

G : X1 → X2 pG(x
(0,j)
1 , x

(0,j)
2 ) = p(x

(0,j)
1 )p(x

(0,j)
2 |x(0,j)

1 )
indep.

= p(x
(0,j)
1 )p(x

(0,j)
2 )

(4.23)

If we intervene in the ks-th intervention on X1, Iks = {1}, with X1 := Ñks

1 leading
to the following respective interventional joint densities

Gt : p
do(X1:=Ñks

1 )
Gt (x

(ks,j)
1 , x

(ks,j)
2 ) = p(ñ

(ks,j)
1 )p(x

(ks,j)
2 )

G : p
do(X1:=Ñks

1 )
G (x

(ks,j)
1 , x

(ks,j)
2 ) = p(ñ

(ks,j)
1 )p(x

(ks,j)
2 |ñ(ks,j)

1 )
indep.

= p(ñ
(ks,j)
1 )p(x

(ks,j)
2 )

(4.24)

In both cases we see the effects of Xi being independent of its parent in PA
(k,j),G
i ,

(k = 0, ks) namely X2.

(C) For the two graphs with respective observational joint densities (any sample j)

Gt : X1 ← X2 pGt(x
(0,j)
1 , x

(0,j)
2 ) = p(x

(0,j)
1 |x(0,j)

2 )p(x
(0,j)
2 )

G : X1 → X2 pG(x
(0,j)
1 , x

(0,j)
2 ) = p(x

(0,j)
1 )p(x

(0,j)
2 |x(0,j)

1 )
(4.25)

If we intervene in the ks-th intervention on X1, Iks = {1}, with X1 := Ñks

1 leading
to the following respective interventional joint densities

Gt : p
do(X1:=Ñks

1 )
Gt (x

(ks,j)
1 , x

(ks,j)
2 ) = p(ñ

(ks,j)
1 )p(x

(ks,j)
2 )

G : p
do(X1:=Ñks

1 )
G (x

(ks,j)
1 , x

(ks,j)
2 ) = p(ñ

(ks,j)
1 )p(x

(ks,j)
2 |ñ(ks,j)

1 )
indep.

= p(ñ
(ks,j)
1 )p(x

(ks,j)
2 )

(4.26)

For e.g. X2 = N (0, 3), X1 := X2 + N (0, 1) and given x
(0,j)
1 = 0 we have that

p(x
(ks,j)
2 |ñ(ks,j)

1 ) = p(x
(ks,j)
2 ) = N (0, 3) 6= N (0, 1) = p(x

(0,j)
2 |x(0,j)

1 ).

Given a graph G we consider all nodes if we look at sources SOG and dependants DPG.
For sources we have

Corollary 4.4 (Falsifying Proposed Sources).
For Xq ∈ SOG we have Xq /∈ SOGt if there exists an intervention ks with q /∈ Iks such

that (for any sample j) p
(
x

(ks,j)
q

)
6= p

(
x

(0,j)
q

)
pointwise for x

(ks,j)
q = x

(0,j)
q ∈ R.

and for dependants
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4 The Gaussian Process SCM (GP-SCM)

Corollary 4.5 (Falsifying Proposed Dependencies).
For Xq ∈ DPG and considering an edge (vp, vq) ∈ EG in the graph G we have that
(vp, vq) /∈ EGt, i.e. the edge is not in the true graph Gt, if there exists an intervention
kp with q /∈ Ikp such that (for any sample j)

p
(
x

(kp,j)
i |PA

(kp,j),G
i = pa

(kp,j),G
i

)
6= p

(
x

(0,j)
i |PA

(0,j),G
i = pa

(0,j),G
i

)
(4.27)

pointwise (i.e. for x
(kp,j)
i = x

(0,j)
i ∈ R and pa

(kp,j),G
i = pa

(0,j),G
i ∈ RDi) or alternatively

Xq |= Xp.

In practice, we try to utilize these corollaries by proposing (for many purposes) reasonable
assumptions in the following ways:

For sources we implement Corollary 4.4 in an ad-hoc style by choosing the interventions
ks on all other variables Xp simultaneously with a large variance gap

”V[Xq] ≈ V[Xp] >> V[Ñks

p ] ” (4.28)

Then it is sensible to assume that with a true, latent functional assignment Xq :=

fuq (..., Xp, ...)+Nq we may observe ad-hoc that ”V[X
(ks,j)
q ] << V[X

(0,j)
q ] ” (for any sample

j) as we don’t expect large variation from the additive noise Nq.

For dependencies we implement Corollary 4.5 in an ad-hoc style by again assuming that
we have noises Nq with small variances around the true, latent functions fuq compared to
the variation of the actual variables Xq, i.e.

”V[Xq] >> V[Xq|P̃Aq = p̃aq] >> V[Xq|PAq = paq] = V[Nq] ” (4.29)

with P̃Aq ( PAq.

With these deliberations we decide to formulate a score. For this purpose in order to detect
the correct dependencies (i.e. edges for a given dependant) we intervene on every variable
Xi, i = 1, ..., d with do(Xi := Ñk

i ) individually in intervention k ∈ K1 = {1, ..., d},
where Ñk

i ∼ U(−sli, sri ) is uniformly distributed on an estimated ”support interval”
(−sl, sr) ⊂ R we typically observe for (most samples of) Xi. To detect the correct sources
we intervene on all combinations of d − 1 variables Xi with (k = d + i)-th intervention
do(..., Xi−1 := ci−1, Xi+1 := ci+1, ...), k ∈ K2 = {d+ 1, ..., 2d}, where ci ∈ (−sli, sri ) ⊂ R is
some constant value in a respective support interval for Xi. Apart from that we still have
observational data (k = 0) and in total K = 2d interventions.

We want to start with the basic format of the graph likelihood score LSG as product of
local likelihoods LSGi (4.10), (4.11). As in the Bayesian score (4.18) we make a distinction
between dependants and sources.
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To deal with dependencies, we use data from interventions k /∈ K2 to estimate the
dependencies with GPR as in (4.13). If a dependency p(xi|p̄ai

G) of a wrong graph G 6= Gt
that we want to model with GPR (4.13) has deficiencies as described in Corollary 4.5,
our assumption (4.29) implies that the data we fit our GP-model on likely includes dis-
turbed data points associated with a density that is not the conditional p(xi|paGi ) given

PA
(k,j),G
i = pa

(k,j),G
i as we presume (see Figure 4.1) and thus leading to a worse GP

fit as well as significantly lower GP marginal likelihood. In practice this way of model-
ing dependant/non-source local likelihoods is the same as in the Bayesian case (4.18) and
thus the fitted GP models of Ĝt can be used as estimations of the functional dependencies.

We model the sources within the score for the sole purpose of detecting the graph struc-
ture, not estimating the (marginal) density of the variable: in order to overcome the prob-
lem of the Bayesian score as described in (4.19) of the previous section, we try to create
a symmetric situation with respect to the GP marginal likelihoods of the dependants by
considering a pseudo likelihood, which is also just a GP marginal likelihood, that is fit
on ”artificial” data. This data for a source Xi as proposed by graph G consists of

1) observational samples of Xi, i.e. X
(0,j),G
i on the input side, paired with samples of

noise N obs
i ∼ N (0, εb), where we assume that the base variance εb is of the magnitude

of typical regression variances of all considered variables Xq: ”V[N obs
i ] ≈ V[Nq] ”

2) samples from a uniform distribution on the respective support interval U(−sli, sri )
on the input side, paired with samples of noise N intv

i ∼ N (0, εt), where the variance
εt = εb + εa with εb the same as in 1) and we have additional variance εa, which

acts as a penalty that is low, if the sample variance of the samples X
(k,j),G
i with

k ∈ K2, i /∈ Ik, i.e. the interventions, where we fix every other variable on one value
and intervene repeatedly, is high compared to the sample variance of observational
data of the variable Xi indicating that we are in fact dealing with a source and vice
versa.

If we now fit a GP model on those data points we have in fact a situation that is, given the
various assumptions, symmetric in comparison to the situation with regular dependency
GP models: for interventions we get data points for wrongly assumed edges, which are
disturbed, i.e. stem from distributions with larger variance and thus lead to bad fits and
low GP marginal likelihoods.

In total, we formulate a score (with learned hyperparameters for the involved GP marginal
likelihoods via maximum likelihood as in the Bayesian score)

S(G) =
∏

i/∈SOG ;k/∈K2;j

N
(
x

(k,j)
i |0, Kp̄ai

(k,j),G ,p̄ai
(k,j),G + σ2

i I
)
×

∏
i∈SOG ;k/∈K1;j

qi(x̄
(k,j)
i ) (4.30)

where x̄
(k,j)
i , i ∈ SOG; k /∈ K1 represents the data as described in 1) and 2) above and qi

the function that yields the respective GP marginal likelihood as explained above.

We estimate the true graph structure by maximizing: Ĝt = arg maxG S(G). In order to
get actual estimates for the marginal densities of the sources we can, after we identified
the correct sources, use any method to accomplish that task. For the purpose of clarity
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4 The Gaussian Process SCM (GP-SCM)

Figure 4.1: Example of two variables X, Y and a true graph X → Y with true assign-
ments X := N1 ∼ N (0, 1) and Y := tanh(X) +N2; N2 ∼ N (0, 0.01). Orange
samples stem from the observational distribution, green samples from an inter-
vention on X and blue samples from an intervention on Y . The images show
GP fits, i.e. black line: posterior mean, gray shade: area of the 95%-quantile
for each marginal univariate normal distribution at respective input x or y.
The upper image depicts a successful fit on observational samples and samples
with intervention on input X. The lower image, shows a bad fit accompanied
by a low GP marginal likelihood as we try to fit both observational samples
and samples with intervention on input Y . The latter samples (blue) however
are in reality associated with the marginal density of X at randomly sam-
pled intervention values Y . See also Example 4.3 C). The plot was done with
ggplot2, see Wickham (2016).
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4 The Gaussian Process SCM (GP-SCM)

we stress that this proposal is merely an ad-hoc demonstration of how thinking along the
lines of Theorem 4.2 can lead to causal structure identification methods.
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5 Simulations

We consider a setting of 3 variables X1, X2, X3 and a list of all possible models, i.e. graph
structures, which is all 25 DAG’s that exist for 3 variables:

models <- list(

# v-structures

graph(edges = c(1,3, 2,3), n = 3, directed = T),

graph(edges = c(1,2, 3,2), n = 3, directed = T),

graph(edges = c(2,1, 3,1), n = 3, directed = T),

# reversed v-structures

graph(edges = c(1,2, 1,3), n = 3, directed = T),

graph(edges = c(2,1, 2,3), n = 3, directed = T),

graph(edges = c(3,1, 3,2), n = 3, directed = T),

# hierarchical lines

graph(edges = c(1,2, 2,3), n = 3, directed = T),

graph(edges = c(1,3, 3,2), n = 3, directed = T),

graph(edges = c(2,1, 1,3), n = 3, directed = T),

graph(edges = c(2,3, 3,1), n = 3, directed = T),

graph(edges = c(3,1, 1,2), n = 3, directed = T),

graph(edges = c(3,2, 2,1), n = 3, directed = T),

# v-structures plus parent dependency

graph(edges = c(1,2, 1,3, 2,3), n = 3, directed = T),

graph(edges = c(1,3, 1,2, 3,2), n = 3, directed = T),

graph(edges = c(2,1, 2,3, 1,3), n = 3, directed = T),

graph(edges = c(2,3, 2,1, 3,1), n = 3, directed = T),

graph(edges = c(3,1, 3,2, 1,2), n = 3, directed = T),

graph(edges = c(3,2, 3,1, 2,1), n = 3, directed = T),

# one independent variable

graph(edges = c(1,2), n = 3, directed = T),

graph(edges = c(2,1), n = 3, directed = T),

graph(edges = c(1,3), n = 3, directed = T),

graph(edges = c(3,1), n = 3, directed = T),

graph(edges = c(2,3), n = 3, directed = T),

graph(edges = c(3,2), n = 3, directed = T),

# all independent

graph(edges = c(), n = 3, directed = T)

)

For all simulations we use a squared exponential kernel. All hyperparameters of the var-
ious GP marginal likelihoods are estimated with a maximum likelihood scheme using
the function optimr of the identically named package, which automatically selects a well
performing optimization method.
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5 Simulations

5.1 A Crucial First Simulation

We start with a troublesome case for the Bayesian score based on the issue discussed in
Section 4.3 for a two variable example (4.19).

Here, we define a true graph Gt with structural assignments

X1 := N1 ∼ N (0, 1)

X2 := N2 ∼ N (1, 1)

X3 := 2 tanh(X1) + 4 tanh(X2) +N3, N3 ∼ N (0, 0.01)

(5.1)

Then, the Bayesian score with single variable interventions (|Ik| = 1) as laid out in the ap-
pendix Chapter 7 with a normal distribution assumption on the sources and ML-II scheme
to estimate (hyper)parameters yields posterior probabilities for the individual graphs

[1] 1.439681e-04 6.475304e-31 1.224263e-28 9.194583e-28 2.583109e-22

7.404563e-27 3.650746e-24 2.517955e-26 6.505686e-26 4.116493e-22

2.703855e-28 4.646381e-27 1.393418e-02

[14] 2.403088e-26 9.859219e-01 1.803989e-20 7.066772e-27 3.244935e-25

2.477551e-32 1.753007e-30 9.499852e-30 2.793626e-30 3.771955e-26

6.784823e-31 2.559808e-34

(see BAYESIAN_SCORE_3Var_first_sim.RData) with the true graph being the first one,
we see that graph structures 13 and 15 outperform the true graph with larger probabili-
ties. These are exactly the graphs with an additional edge between X2 and X3 compared
to the true graph Gt. We thus are dealing with a three variable case of the issue mentioned
above from Section 4.3.

For the alternative score as laid out in the appendix Chapter 7 on the other hand we
get considering (5.1) the following graph probabilities (from the likelihood score through
normalization)

[1] 1.000000e+00 3.421358e-47 1.079388e-51 2.915308e-53 1.450137e-47

9.935375e-76 7.857591e-45 6.797782e-53 4.094551e-57 8.422600e-54

2.886526e-77 9.744980e-75 3.368771e-29

[14] 2.007097e-56 3.064108e-29 1.139806e-52 1.151110e-71 3.920842e-77

6.022905e-45 4.926119e-52 3.221704e-26 1.374352e-43 2.549783e-21

2.834248e-45 2.659305e-22

(see ALTERNATIVE_SCORE_3Var_first_sim.RData) i.e. the first and true graph has the
largest probability/score compared to all other possible graphs.

5.2 Further Simulations

With the same setting as before we will now present further simulations for other ground
truth functions and graph structures.
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5 Simulations

5.2.1 Another v-structure

With structural assignments

X1 := N1 ∼ N (−1, 1)

X2 := N2 ∼ N (0, 1)

X3 := 3X3
1 + 2X2

2 +N3, N3 ∼ N (0, 0.1)

(5.2)

we have the following graph probabilities for the Bayesian score

[1] 1.502097e-04 6.303566e-109 1.488111e-105 2.835263e-15 1.321781e

-26 1.593816e-104 6.312110e-25 6.336669e-15 5.937152e-17 1.095274

e-24 7.131332e-105 1.923424e-106

[13] 9.793420e-01 2.835265e-15 2.050780e-02 1.490129e-21 7.131336e

-105 2.168400e-101 6.303563e-109 1.319991e-110 4.348674e-19 1.093791

e-108 9.681398e-29 1.408814e-108

[25] 9.668288e-113

and for the alternative score

[1] 1.000000e+00 1.373201e-45 1.747991e-37 9.334440e-23 8.878353e-42

3.528637e-54 1.916680e-47 4.412823e-26 1.029244e-18 5.103542e-43

1.945122e-54 2.511776e-50 1.244737e-13

[14] 1.976179e-23 3.984552e-14 6.558364e-39 1.683596e-55 1.537473e-54

4.696852e-43 1.291076e-39 3.191373e-12 1.798024e-47 3.154397e-36

3.839792e-46 1.386127e-40

We see that we have the same situation as in the previous section: the Bayesian score has
trouble not proposing the additional edge between the sources and with the alternative
score we pick the correct graph.

5.2.2 Reversed v-structure

With structural assignments

X1 := N1 ∼ N (0, 1)

X2 := 3 tanh(X1) +N2, N2 ∼ N (0, 0.01)

X3 := tanh(X1) +N3, N3 ∼ N (0, 0.01)

(5.3)

we have the following graph probabilities for the Bayesian score

[1] 1.139379e-34 1.775000e-21 4.952725e-41 9.940379e-01 2.399730e-39

1.429283e-38 1.221974e-13 4.116050e-26 1.952106e-26 8.076875e-39

3.451760e-13 4.246560e-39 1.503564e-03

[14] 4.458576e-03 2.952721e-29 1.529329e-35 1.548224e-15 2.706299e-35

3.957357e-19 7.771517e-45 7.532673e-32 2.615693e-44 9.259937e-45

1.638638e-44 2.998827e-50
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5 Simulations

and for the alternative score

[1] 6.702415e-33 5.447379e-23 9.564067e-58 9.999994e-01 1.409147e-64

2.781593e-64 2.032970e-15 9.021116e-24 8.681748e-46 7.441984e-68

3.411806e-43 2.790289e-58 1.498713e-10

[14] 6.460225e-07 6.126305e-57 3.319391e-60 1.692261e-46 2.457876e-60

6.547202e-23 3.645429e-65 4.591996e-31 1.499200e-63 1.239461e-45

1.508226e-38 8.291508e-45

We see that in both cases we pick the correct graph [4].

5.2.3 Hierarchical Lines

With structural assignments

X1 := N1 ∼ N (0, 1)

X2 := tanh(X1) +N2, N2 ∼ N (0, 0.01)

X3 := 4 tanh(X2) +N3, N3 ∼ N (0, 0.01)

(5.4)

we have the following graph probabilities for the Bayesian score

[1] 1.072843e-21 4.611478e-31 6.691595e-43 7.471541e-26 5.310373e-11

8.111429e-35 9.992019e-01 1.835053e-35 3.970836e-36 8.680963e-13

3.302623e-25 4.961975e-33 7.981335e-04

[14] 6.742877e-26 4.241772e-14 1.308512e-12 2.980534e-25 1.222664e-34

5.109814e-31 2.715669e-41 1.004317e-43 4.439354e-43 1.343118e-18

1.254999e-40 6.868563e-49

and for the alternative score

[1] 2.710151e-19 1.802531e-27 4.601883e-67 2.851785e-26 1.277507e-37

4.100991e-65 9.997306e-01 4.045939e-43 3.296778e-67 8.326436e-41

3.026273e-49 1.344298e-64 2.694167e-04

[14] 5.579268e-28 9.751427e-44 1.569520e-36 1.264085e-54 1.659134e-65

5.176544e-26 9.876014e-63 3.796145e-46 2.874743e-71 3.952621e-19

1.506601e-42 5.055249e-44

We see that in both cases we pick the correct graph [7].

5.2.4 v-structure Plus Parent Dependency

With structural assignments

X1 := N1 ∼ N (0, 1)

X2 := 3 tanh(X1) +N2, N2 ∼ N (0, 0.01)

X3 := 2 tanh(X1) + tanh(X2) +N3, N3 ∼ N (0, 0.01)

(5.5)
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we have the following graph probabilities for the Bayesian score

[1] 2.422612e-33 1.968859e-35 6.384735e-56 8.312929e-14 3.749511e-44

3.176197e-47 1.088819e-18 1.469480e-37 2.862680e-39 1.584076e-43

1.796792e-23 7.518065e-48 1.000000e+00

[14] 5.470250e-18 3.443648e-26 2.323471e-43 1.182363e-27 4.658743e-47

2.991999e-31 1.030339e-56 2.013900e-46 4.352929e-56 2.637787e-51

5.288970e-55 7.248451e-64

and for the alternative score

[1] 1.645474e-24 1.815180e-27 1.358299e-67 4.098539e-12 5.703392e-64

4.219067e-71 6.438697e-19 1.964621e-38 1.020953e-60 2.684915e-66

1.055802e-46 3.997028e-67 1.000000e+00

[14] 1.745724e-14 9.633601e-47 1.002286e-61 1.890102e-51 2.066697e-69

4.453063e-28 3.512293e-72 5.426607e-43 1.139626e-72 1.691772e-46

9.247625e-49 2.820748e-48

We see that in both cases we pick the correct graph [13].

5.2.5 One Independent Variable

With structural assignments

X1 := N1 ∼ N (0, 1)

X2 := tanh(X1) +N2, N2 ∼ N (0, 0.01)

X3 := N3 ∼ N (−1, 1)

(5.6)

we have the following graph probabilities for the Bayesian score

[1] 1.330589e-20 3.608666e-07 2.408651e-19 4.723143e-02 2.228811e-16

1.675583e-14 4.723128e-02 9.256235e-16 2.228818e-16 1.121886e-16

8.549934e-01 3.328822e-14 4.723139e-02

[14] 1.680818e-04 2.228816e-16 1.121880e-16 3.042653e-03 1.675576e-14

1.014045e-04 4.785204e-19 1.330590e-20 2.408662e-19 1.330586e-20

1.987286e-18 2.856736e-23

and for the alternative score

[1] 1.018193e-27 2.710557e-03 2.462031e-26 1.569613e-12 1.414364e-33

1.368463e-27 4.157896e-14 3.116213e-25 5.266883e-32 6.170506e-41

1.053954e-16 2.448860e-25 5.650785e-12

[14] 8.782095e-13 1.558345e-35 1.120082e-35 3.165140e-17 2.027592e-28

9.972894e-01 6.300662e-28 4.024197e-25 6.046635e-25 1.048755e-26

7.459849e-16 3.478308e-18
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5 Simulations

We see that the Bayesian score does not find the correct graph [19] unlike the alternative
score.

5.2.6 All Variables Independent

With structural assignments

X1 := N1 ∼ N (0, 1)

X2 := N2 ∼ N (1, 1)

X3 := N3 ∼ N (−1, 1)

(5.7)

we have the following graph probabilities for the Bayesian score

[1] 9.901551e-06 2.484159e-07 1.765437e-04 6.465786e-03 2.660833e-03

2.782906e-02 2.671694e-05 1.335522e-03 6.439501e-01 1.541656e-02

1.347314e-01 4.803178e-03 1.328244e-03

[14] 9.227994e-04 1.322844e-01 2.709851e-03 1.922892e-02 4.891662e-03

1.740578e-06 1.733502e-04 4.819998e-05 1.004371e-03 1.991646e-07

3.595202e-07 1.297535e-08

and for the alternative score

[1] 4.741912e-24 2.371493e-23 6.508741e-25 8.425139e-55 4.113894e-53

5.093052e-53 5.380591e-53 2.580314e-53 1.498088e-50 6.428730e-53

6.184357e-51 4.439157e-51 1.980049e-54

[14] 1.959407e-50 3.400456e-53 2.245854e-50 2.754802e-53 4.860573e-52

4.315258e-30 2.462836e-26 1.218939e-24 6.669845e-24 2.295934e-28

2.160237e-27 1.000000e+00

We see that the Bayesian score does not find the correct graph [25] unlike the alternative
score.
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6 Conclusion And Outlook

We have examined a Bayesian approach of causal structure learning with Gaussian pro-
cess priors for the functional dependencies. In order to address issues that arise in this
case we have explored an alternative idea of defining a score for causal discovery, which
has been shown to solve the issue under certain conditions in practice.

This alternative approach may have the potential to be developed into an advanced the-
ory of learning causal structure with Gaussian processes from interventional data using
verifiable and practicable regularity assumptions as well as some kind of finite sample
guarantees. Furthermore, the algorithm could be connected to a automatic GPR model
construction machinery as in Duvenaud (2014) in an effort to make the approach suitable
in scenarios of few a priori assumptions about the dependencies.

All in all we can conclude that in order to present a widely applicable causal structure
learning algorithm in the described setting of generally few assumptions with small sam-
ples sizes a lot of further research needs to be conducted.
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7 Appendix - Source Code

We start by integrating R packages data.table (Dowle and Srinivasan (2019)), emulator
(Hankin (2005)), gridExtra (Auguie (2017)), optimr (Nash), EstimationTools (Mos-
quera and Hernandez (2019)), kernlab (Karatzoglou et al. (2004)), igraph (Csardi and
Nepusz (2006)), rje (Evans (2020)), purrr (Henry and Wickham (2020)) and defining
the ground truth circumstances:

library(data.table)

library(emulator)

library(gridExtra)

library(optimr)

library(EstimationTools)

library(kernlab)

library(igraph)

library(rje)

library(purrr)

#>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

#------------------- GROUND TRUTH SECTION -------------------

#>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

#---------- Ground Truth Setup ----------

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

# number of variables

n_var <- 3

all_var <- rep (1:n_var)

all_var_names <- c("x_1", "x_2", "x_3")

# choose ground truth causal graph

g_true <- graph(edges = c(1,3, 2,3), n = n_var , directed = T)

# plot graph

plot(g_true)

# adjaceny matrix , rows: outgoing edeges , columns: incoming edges ... of

that node

adjm_true <- as.matrix(g_true [])

# choose ground truth SCM

scm_true <- list(X1 = function(n) rnorm(n, 0, 1),

X2 = function(n) rnorm(n, 1, 1),
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7 Appendix - Source Code

X3 = function(x1 , x2 , n) 2*tanh(x1) + 4*tanh(x2) +

rnorm(n, 0, 0.1))

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

#---------- Available functions ----------

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

#’ generate n samples (x_1. ...) from the joint underlying distribution

#’

#’ @param input SCM (either true observational or some interventional)

#’ @param n sample size

#’

#’ @return the samples (x_1. ...) as data table

joint_sample <- function(scm , n){

# evaluation of variables given the input SCM

x1 = scm$X1(n)

x2 = scm$X2(n)

x <- list(x_1 = x1,

x_2 = x2,

x_3 = scm$X3(x1, x2, n))

return(as.data.table(x))

}

#’ generate n samples (default 1) from the interventional distribution P

(.|do(X_i = x))

#’

#’ @param scm_intv the SCM that ’s scheduled for intervention

#’ @param i_do index of variable , that is being intervened on

#’ @param x_do intervention value on X_i

#’ @param n number of returned samples from the interventional SCM

#’

#’ @return the samples (x_1. ...) as data table

Do_sample <- function(scm_intv , i_do , x_do , n = 1){

# set the intervention variable to the intervention value

body(scm_intv[[i_do]]) <- substitute(x_do)

# get new samples

smp <- joint_sample(scm = scm_intv , n = n)

# tag the samples

smp <- smp[,doX := i_do ,]

return(smp)

}
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#’ generate n(=1) sample(s) from the interventional distribution P(.|do(

X_i = xi, X_j = xj))

#’

#’ @param scm_intv the SCM that ’s scheduled for intervention

#’ @param i_do index of 1st variable , that is being intervened on

#’ @param xi_do intervention value on X_i

#’ @param j_do index of 2nd variable , that is being intervened on

#’ @param xj_do intervention value on X_j

#’ @param n number of returned samples from the interventional SCM

#’

#’ @return the samples (x_1. ...) as data table

Do2_sample <- function(scm_intv , i_do , xi_do , j_do , xj_do , n = 1){

# set the intervention variables to the intervention values

body(scm_intv[[i_do]]) <- substitute(xi_do)

body(scm_intv[[j_do]]) <- substitute(xj_do)

# get new samples

smp <- joint_sample(scm = scm_intv , n = n)

# tag the samples

smp <- smp[,doX := NA ,][,doXi := i_do ,][,doXj := j_do ,]

return(smp)

}

We define functions we need for both the Bayesian and the alternative score in order to
discover the causal structure.

#>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

#-------------------------- DISCOVERY --------------------------

#>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

#---------- Useful general functions ----------

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

#’ elementary symmetric polynomials

#’

#’ @param z vector of inputs

#’ @param o_p order of polynomial

#’

#’ @return value of elementary symmetric polynomial

es_poly <- function(z, o_p){

# input dimension

d = length(z)
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# compute the powerset of z up to order o_p

pS <- powerSet(z, m = o_p)

# filter out the subsets not of that order

S <- Filter(Negate(is.null), lapply(pS, function(i) if(length(i) == o_

p) i))

# return the sum of products of the respective interactions

return(sum(unlist(lapply(S, function(i) prod(i)))))

}

#’ customized base kernel: squared exponential (+ linear , turned off)

#’

#’ @param v outer coefficient of exponential

#’ @param w outer coefficient of exponential

#’ @param a coeffincient of linear

#’ @param x first input

#’ @param y second input

#’

#’ @return kernel value

k_base <- function(v, w, a, x, y) return(v*exp(-w*((abs(x-y))^2)/2))

# define class from kernlab package

class(k_base) <- "kernel"

#’ generic kernel/covariance function with customized kernel with noise

#’

#’ @param lhp list of log parameters v, w, a, k_add_o, vv

#’ @param X_l data in design matrix form (columsn = features resp.

dimensions)

#’ @param X_r secondary data for K(X_l,X_r) in design matrix form

#’ @param vv_incl Boolean for inclusion of variance in resulting kernel

matrix , only sensible for X_l == X_r

#’

#’ @return the kernel/covariance matrix

cov_cust <- function(lhp , X_l, X_r, vv_incl = F){

# number of input dimensions

D = ncol(X_l)

# additive kernel

ker_cust <- function(x,y){

# base kernel values (see Duvenaud)

z <- k_base(v = exp(lhp$ex.v), w = exp(lhp$ex.w), a = exp(lhp$lin.a)

, x = x, y = y)

# full additive kernel w/ resp. weights up to full order D

# (not recursive)

k_add <- sum(exp(lhp$k_add_w) * sapply (1:D, function(o) es_poly(z, o

)))
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# switch to alternative recursive , if D >= 5

# list of (o-1)th order kernels , 1st elemnt dummy for the sum in the

for loop

#k_add_l <- list (1)

# recursive formula "Newton -Girard" to efficiently compute the

elementary symmetric polynomials

#for(o in 1:D){

# k_add_l[[o + 1]] <- 1/o * sum(sapply (1:o, function(k) (-1)^(k

-1) * k_add_l[[(o-k) + 1]] * sum(z^k)))

#}

#k_add <- sum(exp(lhp$k_add_w) * unlist(k_add_l)[2:(D+1)])

return(k_add)

}

if(vv_incl){

# case of X_l == X_r, number of observations:

n <- nrow(X_l)

return(kernelMatrix(kernel = ker_cust , x = as.matrix(X_l), y = as.

matrix(X_r)) + diag(exp(lhp$vv), n))

}

else return(kernelMatrix(kernel = ker_cust , x = as.matrix(X_l), y = as

.matrix(X_r)))

}

#’ derivative of generic kernel/covariance function with customized

kernel with noise

#’

#’ @param lhp list of log parameters v, w, a, vv

#’ @param X data

#’

#’ @return "gradient" of the kernel/covariance matrix (order of

hyperparameters in lhp maintained)

#’ i.e. list of derivative matrices

D_cov_cust <- function(lhp , X){

# number of observations and dimensions

n = nrow(X)

D = ncol(X)

# derivatives ...

# ... wrt ex.v

ker_cust_dv <- function(x, y){

# base kernel values (see Duvenaud)

z <- k_base(v = exp(lhp$ex.v), w = exp(lhp$ex.w), a = exp(lhp$lin.a)
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, x = x, y = y)

# apply chain rule: df/dz * dz/dv , where z = c(z_1, z_2, ..., z_D)

and f = k_add_o

# dk_add_o/dz: D 1xD matrices (see Duvenaud)

dk_add_o_diff_dz <- t(sapply (1:D, function(o) sapply (1:D, function(d

) es_poly(z[-d],o-1))))

# dz/dv

dz_diff_dv <- as.matrix(k_base(v = 1, w = exp(lhp$ex.w), a = 0, x =

x, y = y))

# column vector partial order derivatives w/o additive weights

dk_add_o_diff_dv <- dk_add_o_diff_dz %*% dz_diff_dv

# entire partial derivative

return(sum(exp(lhp$k_add_w) * dk_add_o_diff_dv))

}

cov_dv <- kernelMatrix(kernel = ker_cust_dv , x = as.matrix(X), y = as.

matrix(X))

# ... wrt ex.w

ker_cust_dw <- function(x, y){

# base kernel values (see Duvenaud)

z <- k_base(v = exp(lhp$ex.v) * (-((abs(x-y))^2)/2), w = exp(lhp$ex.

w), a = 0, x = x, y = y)

# apply chain rule: df/dz * dz/dv , where z = c(z_1, z_2, ..., z_D)

and f = k_add_o

# dk_add_o/dz: D 1xD matrices (see Duvenaud)

dk_add_o_diff_dz <- t(sapply (1:D, function(o) sapply (1:D, function(d

) es_poly(z[-d],o-1))))

# dz/dv

dz_diff_dv <- as.matrix(k_base(v = 1, w = exp(lhp$ex.w), a = 0, x =

x, y = y))

# column vector partial order derivatives w/o additive weights

dk_add_o_diff_dv <- dk_add_o_diff_dz %*% dz_diff_dv

# entire partial derivative

return(sum(exp(lhp$k_add_w) * dk_add_o_diff_dv))

}

cov_dw <- kernelMatrix(kernel = ker_cust_dw , x = as.matrix(X), y = as.

matrix(X))

# ... wrt lin.a

ker_cust_da <- function(x, y){
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# base kernel values (see Duvenaud)

z <- k_base(v = 0, w = 0, a = 1, x = x, y = y)

# apply chain rule: df/dz * dz/dv , where z = c(z_1, z_2, ..., z_D)

and f = k_add_o

# dk_add_o/dz: D 1xD matrices (see Duvenaud)

dk_add_o_diff_dz <- t(sapply (1:D, function(o) sapply (1:D, function(d

) es_poly(z[-d],o-1))))

# dz/dv

dz_diff_dv <- as.matrix(k_base(v = 1, w = exp(lhp$ex.w), a = 0, x =

x, y = y))

# column vector partial order derivatives w/o additive weights

dk_add_o_diff_dv <- dk_add_o_diff_dz %*% dz_diff_dv

# entire partial derivative

return(sum(exp(lhp$k_add_w) * dk_add_o_diff_dv))

}

cov_da <- kernelMatrix(kernel = ker_cust_da , x = as.matrix(X), y = as.

matrix(X))

# ... wrt k_add_w[]: list of ker_cust functions and then list of

covariance matrices

ker_cust_dadd_w <- lapply (1:D, function(d) return(function(x, y){

# base kernel values (see Duvenaud)

z <- k_base(v = exp(lhp$ex.v), w = exp(lhp$ex.w), a = exp(lhp$lin.a)

, x = x, y = y)

# derivative of full additive kernel w/ respect to weights , not

recursive

dk_add <- es_poly(z, d)

return(dk_add)

}))

cov_dadd_w <- lapply (1:D, function(d) kernelMatrix(kernel = ker_cust_

dadd_w[[d]], x = as.matrix(X), y = as.matrix(X)))

# ... wrt vv

cov_dvv <- diag(n)

# list w/ all cov matrices

cov_list <- list(cov_dv , cov_dw , cov_da)

for(d in 1:D) cov_list[[d+3]] <- cov_dadd_w[[d]]

cov_list[[D+4]] <- cov_dvv

return(cov_list)

}
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#’ source node estimation w/ ML and simple univariate Gaussians

#’

#’ @param xtrain univariate samples (expected still in data.table format

)

#’

#’ @return list of estimated mean and variance

est_source <- function(xtrain){

# simple ML scheme for Gaussian

f_Xloglike <- maxlogL(x = as.double(unlist(xtrain)), dist = ’dnorm ’,

start=c(0, 1), lower=c(-4, 0.01) , upper=c(4, 4))

# estimates for mean and variance

return(list(X_mea = f_Xloglike$fit$par[1], X_var = f_Xloglike$fit$par

[2]^2))

}

#’ dependant node estimation: GPR w/ ML -II scheme for hyperparameter

optimization

#’

#’ @param ytrain univariate data of the dependant node

#’ @param xtrain possibly multivariate data of

#’ @param dep_par list of parameters for the regression situation (level

of dep_param [[1]][[1]])

#’

#’ @return list of estimates in standard form:

est_dependant <- function(ytrain , xtrain , dep_par){

# ensure canonical form: column vectors for the various dimensions

ytrain <- t(t(ytrain))

xtrain <- t(t(xtrain))

# number of observations and dimensions

n = nrow(xtrain)

D = ncol(xtrain)

# get initial hyperparameter

log_hp <- dep_par$para

#------ functions

#’ (marginal) GP loglikelohood

#’

#’ @param lpara log hyperparameter

#’

#’ @return likelihood value

minus_maloglike <- function(lpara){

lhp <- list("ex.v" = lpara[1], "ex.w" = lpara[2], "lin.a" = lpara

[3], "k_add_w" = lpara [4:(D+3)], "vv" = lpara[(D+4)])

Cv <- cov_cust(lhp , X_l = xtrain , X_r = xtrain , vv_incl = T)
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return (0.5*quad.form(solve(Cv), unlist(ytrain)) + 0.5*log(det(Cv)) +

0.5*n*log(2*pi))

}

#’ gradients of those minus GP loglikelihoods

#’

#’ @param lpara log hyperparameter

#’

#’ @return likelihood value

D_minus_maloglike <- function(lpara){

lhp <- list("ex.v" = lpara[1], "ex.w" = lpara[2], "lin.a" = lpara

[3], "k_add_w" = lpara [4:(D+3)], "vv" = lpara[(D+4)])

Cv <- cov_cust(lhp , X_l = xtrain , X_r = xtrain , vv_incl = T)

Cv_inv <- solve(Cv)

D_Cv <- D_cov_cust(lhp , X = xtrain)

alph <- Cv_inv %*% as.matrix(ytrain)

# return derivative of minus loglikelihood

return(unlist(lapply( D_Cv , function(i) return(- 0.5 * tr((( alph %*%

t(alph)) - Cv_inv) %*% i)))))

}

#------ main

lhp_init <- list("ex.v" = log(5), "ex.w" = log (10), "lin.a" = log (10),

"k_add_w" = log(rep(1/D, D)), "vv" = log(1))

o_res <- optimr(fn = minus_maloglike , gr = D_minus_maloglike , par = as

.double(unlist(lhp_init)))

dep_par$para = list("ex.v" = o_res$par[1], "ex.w" = o_res$par[2], "lin

.a" = o_res$par[3],

"k_add_w" = o_res$par [4:(D+3)], "vv" = o_res$par[(

D+4)])

dep_par$conv = o_res$convergence

# calculate covariance matrices with optimized parameters

dep_par$Cov <- cov_cust(dep_par$para , X_l = xtrain , X_r = xtrain , vv_

incl = T)

return(dep_par)

}

#’ pseudo source node estimation: GPR w/ ML -II scheme for hyperparameter

optimization

#’

#’ @param data data table with observational data and fixed value
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intervention on all other d-1 variables

#’ @param psou_par list of parameters for the regression situation (

level of psou_param [[1]][[1]])

#’

#’ @return list of estimates in standard form:

est_pseudo_source <- function(psou_data , psou_par){

# select correct (regular + additional) observational sample data ,

restricted to max. 3 variable case

if(psou_par$sou == 1){

psou_data <- psou_data[,-c(2,3)]

sou_data_obs_add <- data_obs_add[,1]

}

if(psou_par$sou == 2){

psou_data <-psou_data[,-c(1,3)]

sou_data_obs_add <- data_obs_add[,2]

}

if(psou_par$sou == 3){

psou_data <- psou_data[,-c(1,2)]

sou_data_obs_add <- data_obs_add[,3]

}

# calculate observational sample variance (corrected), also from

additional observational data

smp_var_obs = as.double(var(rbind(psou_data[doX == 0][,1],sou_data_obs

_add)))

# calculate intventional sample variance (corrected)

smp_var_intv = as.double(var(psou_data[is.na(doX)][,1]))

# set base noise variance equal to the noise variance around

functional values in GPR settings (base level now fixed sd = 0.1,

var = 0.01)

eps_base <- 0.01

# set additional noise according to linear function:

# if intervetional sample variance is high (probably source with

fixed interventions) -> small additional noise , low penalty

# else -> additional variance as high as spread of entire variable

’smp_var_obs ’, high penalty

eps_add <- max(0,-smp_var_intv + smp_var_obs)

# calculate total noise as sum of base and additional noise

eps_total <- eps_add + eps_base

# generate pseudo GP fitting data , first the observational data with

just base noise

data_pseudofit_obs <- list(x_1 = psou_data[doX == 0][,1],

x_2 = rnorm(n_obs , 0, sqrt(eps_base)))

# then the for the "interventional data" randomly distributed points

with full noise eps_total , change with different "support interval"
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data_pseudofit_intv <- list(x_1 = runif (((n_var -1)*n_intv), min = -2,

max = 2),

x_2 = rnorm (((n_var -1)*n_intv), 0, sqrt(

eps_total)))

# entire data to do GP pseudo fit on

data_pseudofit <- rbind(as.data.table(data_pseudofit_obs), as.data.

table(data_pseudofit_intv))

#plot(data_pseudofit)

# fit pseudo GP

res_psou_par <- est_dependant(ytrain = data_pseudofit$x_2, xtrain =

data_pseudofit$x_1, dep_par = psou_par)

res_psou_par[["ydat"]] <- data_pseudofit$x_2

return(res_psou_par)

}
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For the Bayesian score we consider the following learning setup and causal discovery
scheme for the case of 3 considered variables:

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

#---------- Learning Setup ----------

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

# considered models

models <- list(

# v-structures

graph(edges = c(1,3, 2,3), n = 3, directed = T),

graph(edges = c(1,2, 3,2), n = 3, directed = T),

graph(edges = c(2,1, 3,1), n = 3, directed = T),

# reversed v-structures

graph(edges = c(1,2, 1,3), n = 3, directed = T),

graph(edges = c(2,1, 2,3), n = 3, directed = T),

graph(edges = c(3,1, 3,2), n = 3, directed = T),

# hierarchical lines

graph(edges = c(1,2, 2,3), n = 3, directed = T),

graph(edges = c(1,3, 3,2), n = 3, directed = T),

graph(edges = c(2,1, 1,3), n = 3, directed = T),

graph(edges = c(2,3, 3,1), n = 3, directed = T),

graph(edges = c(3,1, 1,2), n = 3, directed = T),

graph(edges = c(3,2, 2,1), n = 3, directed = T),

# v-structures plus parent dependency

graph(edges = c(1,2, 1,3, 2,3), n = 3, directed = T),

graph(edges = c(1,3, 1,2, 3,2), n = 3, directed = T),

graph(edges = c(2,1, 2,3, 1,3), n = 3, directed = T),

graph(edges = c(2,3, 2,1, 3,1), n = 3, directed = T),

graph(edges = c(3,1, 3,2, 1,2), n = 3, directed = T),

graph(edges = c(3,2, 3,1, 2,1), n = 3, directed = T),

# one independent variable

graph(edges = c(1,2), n = 3, directed = T),

graph(edges = c(2,1), n = 3, directed = T),

graph(edges = c(1,3), n = 3, directed = T),

graph(edges = c(3,1), n = 3, directed = T),

graph(edges = c(2,3), n = 3, directed = T),

graph(edges = c(3,2), n = 3, directed = T),

# all independent

graph(edges = c(), n = 3, directed = T)

)

# number of models

n_models <- length(models)

# list of respective adjacency matrices

adjm <- lapply(models , function(g) as.matrix(g[]))

# distribution of considered graphs

prob_g <- rep(1/n_models , n_models)

# current sample size

n <- 5
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# generate 5 samples

data <- joint_sample(scm = scm_true , n)

# intervention indicator: 0 = no (obs), 1 = doX_1, 2 = doX_2, ...

data <- data[,doX := 0,]

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

#---------- Bayesian Causal Discovery ----------

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

######## for purely observational data

#******************************************************

# for source nodes: ML estimation

# get source nodes (no incoming edges means zero sum columns)

sources <- lapply(adjm , function(m) which(colSums(m) == 0))

# ESTIMATE all source parameter for all modeld considered (outer loop)

# and within each model for all source nodes (inner loop)

# result: list[models] of lists[source nodes] of lists[parameters of

that source node]

source_param <- lapply (1:n_models , function(i_m) lapply(sources [[i_m]],

function(i_s)

list("sou" = i_s, "para" = est_source(data[doX == 0][,get(names(data)[

i_s])]))))

#******************************************************

# for non -source nodes or dependants

# identify the dependants for each model

dependants <- lapply (1:n_models , function(i_m) setdiff(all_var , sources

[[i_m]]))

# identify parents for each dependant

# result: list[models] of lists[dependant nodes] of lists[dependant node

(1) or his parents (2)]

dep_parent <- lapply (1:n_models , function(i_m) lapply(dependants [[i_m

]], function(i_d) list("dep" = i_d, "parent" = which(adjm[[i_m]][, i

_d] == 1))))

# list to carry the GPR parameters to be estimated

# result: list[models] of lists[dependant nodes] of lists[dependant node

(1)or the list of parameter of the additive kernel GPR (2)]

# INITIALIZE all dependent parameters for GPR

#’ @param ex.v log linear weight for (exp)^2 part

#’ @param ex.w log exp weight for (exp)^2 part

#’ @param lin.a log linear weight lin part

#’ @param k_add_w log vector of weights for the o-th order additive
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kernel respectively

#’ @param vv log variance of GPR w/ normal noise

# i_d now list in style of "dep_parent [[1]][[1]]"

dep_param <- lapply (1:n_models , function(i_m) lapply(dep_parent [[i_m]],

function(i_d) {

i_d[["para"]] <- list("ex.v" = log(5), "ex.w" = log

(10), "lin.a" = log (10), "k_add_w" = log(rep(1/

length(i_d$parent), length(i_d$parent))), "vv" =

log(1))

i_d[["conv"]] <- 0

i_d[["Cov"]] <- matrix ()

return(i_d)

}))

# ESTIMATE all dependant parameters via the Gaussian process likelihoods

dep_param <- lapply (1:n_models , function(i_m) lapply(dep_param[[i_m]],

function(i_d) est_

dependant(as.

matrix(data[doX

== 0])[,i_d$

dep], as.matrix

(data[doX ==

0])[,i_d$parent

], i_d)))

dep_param [[24]][[1]]

# log likelihoods using Markov factorization

# ... for sources

maloglike_sources <- lapply (1:n_models , function(i_m) sum(sapply(source_

param [[i_m]], function(i_s){

return(sum(log(unlist(lapply(as.matrix(data[doX == 0])[,i_s$sou],

dnorm , mean = i_s$para$X_mea , sd = sqrt(i_s$para$X_var))))))

})))

# .. for dependants (last model has no dependants)

maloglike_dependants <- lapply (1:(n_models -1), function(i_m) sum(sapply(

dep_param[[i_m]], function(i_d){

return (-0.5*quad.form(solve(i_d$Cov), as.matrix(as.matrix(data[doX ==

0])[,i_d$dep])) - 0.5*log(det(i_d$Cov)) - 0.5*n*log(2*pi))

})))

# nothing for last model of independent variables

maloglike_dependants [[25]] <- 0

# ... total

totallike <- exp(unlist(maloglike_sources) + unlist(maloglike_dependants

))

# Bayesian nornalization constant
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norm_const <- sum(prob_g*totallike)

# Bayesian update

prob_g = prob_g*totallike/norm_const

######## for observational and interventional data

# Experiments: get interventional data

for(i in 1:10){

# Choose interventions at random uniformly in [-1, 1]

x_intv <- runif(n_var , min = -1, max = 1)

for(i_v in 1:n_var) data = rbind(data , Do_sample(scm_intv = scm_true ,

i_do = i_v, x_do = x_intv[i_v], n = 1))

n = n + 1

}

# Learning

print("estimating source parameters ...")

# ESTIMATE all source parameter for all models considered (outer loop)

# and within each model for all source nodes (inner loop)

# result: list[models] of lists[source nodes] of lists[parameters of

that source node]

source_param <- lapply (1:n_models , function(i_m) lapply(sources [[i_m]],

function(i_s)

list("sou" = i_s, "para" = est_source(data[doX != i_s][,get(names(

data)[i_s])]))))

print("estimating dependant parameters ...")

# ESTIMATE all dependant parameters via the Gaussian process likelihoods

dep_param <- lapply (1:(n_models -1), function(i_m) lapply(dep_param[[i_m

]],

function(i_d) est_dependant(as.matrix(data[doX != i_d$dep])[,i_d$dep

], as.matrix(data[doX != i_d$dep])[,i_d$parent], i_d)))

# log likelihoods using Markov factorization

# ... for sources

maloglike_sources <- lapply (1:n_models , function(i_m) sum(sapply(source_

param [[i_m]], function(i_s){

return(sum(log(unlist(lapply(as.matrix(data[doX != i_s$sou])[,i_s$

sou], dnorm , mean = i_s$para$X_mea , sd = sqrt(i_s$para$X_var)))))

)

})))
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# .. for dependants , fix n...

maloglike_dependants <- lapply (1:(n_models -1), function(i_m) sum(sapply(

dep_param[[i_m]], function(i_d){

return (-0.5*quad.form(solve(i_d$Cov), as.matrix(as.matrix(data[doX !

= i_d$dep])[,i_d$dep])) - 0.5*log(det(i_d$Cov)) - 0.5*n*log(2*pi)

)

})))

# nothing for last model of independent variables

maloglike_dependants [[25]] <- 0

# ... total

totallike <- exp(unlist(maloglike_sources) + unlist(maloglike_dependants

))

# Bayesian nornalization constant

norm_const <- sum(prob_g*totallike)

# Bayesian update

prob_g = prob_g*totallike/norm_const
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For the alternative score we consider the following learning setup and causal discovery
scheme for the case of 3 considered variables:

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

#---------- Learning Setup ----------

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

# considered models

models <- list(

# v-structures

graph(edges = c(1,3, 2,3), n = 3, directed = T),

graph(edges = c(1,2, 3,2), n = 3, directed = T),

graph(edges = c(2,1, 3,1), n = 3, directed = T),

# reversed v-structures

graph(edges = c(1,2, 1,3), n = 3, directed = T),

graph(edges = c(2,1, 2,3), n = 3, directed = T),

graph(edges = c(3,1, 3,2), n = 3, directed = T),

# hierarchical lines

graph(edges = c(1,2, 2,3), n = 3, directed = T),

graph(edges = c(1,3, 3,2), n = 3, directed = T),

graph(edges = c(2,1, 1,3), n = 3, directed = T),

graph(edges = c(2,3, 3,1), n = 3, directed = T),

graph(edges = c(3,1, 1,2), n = 3, directed = T),

graph(edges = c(3,2, 2,1), n = 3, directed = T),

# v-structures plus parent dependency

graph(edges = c(1,2, 1,3, 2,3), n = 3, directed = T),

graph(edges = c(1,3, 1,2, 3,2), n = 3, directed = T),

graph(edges = c(2,1, 2,3, 1,3), n = 3, directed = T),

graph(edges = c(2,3, 2,1, 3,1), n = 3, directed = T),

graph(edges = c(3,1, 3,2, 1,2), n = 3, directed = T),

graph(edges = c(3,2, 3,1, 2,1), n = 3, directed = T),

# one independent variable

graph(edges = c(1,2), n = 3, directed = T),

graph(edges = c(2,1), n = 3, directed = T),

graph(edges = c(1,3), n = 3, directed = T),

graph(edges = c(3,1), n = 3, directed = T),

graph(edges = c(2,3), n = 3, directed = T),

graph(edges = c(3,2), n = 3, directed = T),

# all independent

graph(edges = c(), n = 3, directed = T)

)

# number of models

n_models <- length(models)

# list of respective adjacency matrices

adjm <- lapply(models , function(g) as.matrix(g[]))

# distribution of considered graphs

prob_g <- rep(1/n_models , n_models)

# current sample size
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n_obs <- 5

# generate 5 samples

data <- joint_sample(scm = scm_true , n_obs)

# intervention indicator: 0 = no (obs), 1 = doX_1, 2 = doX_2, ...

data <- data[,doX := 0,]

# allow to draw 15 additional observational samples just to estimate the

sample variances for pseudo nodes later on equal grounds ,

# not used otherwise

data_obs_add <- joint_sample(scm = scm_true , 15)

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

#---------- Causal Discovery ----------

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

######## for observational and interventional data

#******************************************************

# number of interventions

n_intv <- 10

# total number of values that GPs are fitted on

n_total <- ((n_var -1)*n_intv) + n_obs

# Experiments: get interventional data of K_1

for(i in 1:n_intv){

# choose interventions at random uniformly in [-1, 1]

x_intv <- runif(n_var , min = -1, max = 1)

# get interventional data

for(i_v in 1:n_var) data = rbind(data , Do_sample(scm_intv = scm_true ,

i_do = i_v, x_do = x_intv[i_v], n = 1))

}

# ... and get interventional data of K_2

# generate intervention data for fixed -value -interventions

data <- data[,doXi := NA ,][,doXj := NA ,]

# intervene on every variable w/ fixed intv value 0

for(not_v in 1:n_var){
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i_v <- setdiff (1:n_var , not_v)[1]

j_v <- setdiff (1:n_var , not_v)[2]

# sample size (n_var -1)*n_intv to match sample size for GP = n_obs +

(n_var -1)*n_intv

smp <- Do2_sample(scm_intv = scm_true , i_do = i_v, xi_do = 0, j_do = j

_v, xj_do = 0, n = ((n_var -1)*n_intv))

data = rbind(data , smp)

}

#******************************************************

# for source nodes: ML estimation

# get source nodes (no incoming edges means zero sum columns)

sources <- lapply(adjm , function(m) which(colSums(m) == 0))

#******************************************************

# for non -source nodes or dependants

# identify the dependants for each model

dependants <- lapply (1:n_models , function(i_m) setdiff(all_var , sources

[[i_m]]))

# identify parents for each dependant

# result: list[models] of lists[dependant nodes] of lists[dependant node

(1) or his parents (2)]

dep_parent <- lapply (1:n_models , function(i_m) lapply(dependants [[i_m

]], function(i_d) list("dep" = i_d, "parent" = which(adjm[[i_m]][, i

_d] == 1))))

# list to carry the GPR parameters to be estimated

# result: list[models] of lists[dependant nodes] of lists[dependant node

(1)or the list of parameter of the additive kernel GPR (2)]

print("estimating dependant parameters ...")

# INITIALIZE all dependant parameters for GPR

#’ @param ex.v log linear weight for (exp)^2 part

#’ @param ex.w log exp weight for (exp)^2 part

#’ @param lin.a log linear weight lin part

#’ @param k_add_w log vector of weights for the o-th order additive

kernel respectively

#’ @param vv log variance of GPR w/ normal noise

# i_d now list in style of "dep_parent [[1]][[1]]"

dep_param <- lapply (1:n_models , function(i_m) lapply(dep_parent [[i_m]],

function(i_d) {

i_d[["para"]] <- list("ex.v" = log(5), "ex.w" = log

(10), "lin.a" = log (10), "k_add_w" = log(rep(1/

length(i_d$parent), length(i_d$parent))), "vv" =

log(1))
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i_d[["conv"]] <- 0

i_d[["Cov"]] <- matrix ()

return(i_d)

}))

# ESTIMATE all dependant parameters via the Gaussian process likelihoods

dep_param <- lapply (1:(n_models -1), function(i_m) lapply(dep_param[[i_m

]],

function(i_d) est_dependant(as.matrix(data[doX != i_d$dep & !is.na(doX

)])[,i_d$dep], as.matrix(data[doX != i_d$dep & !is.na(doX)])[,i_d$

parent], i_d)))

dep_param [[1]][[1]]

print("estimating pseudo source parameters ...")

# INITIALIZE all pseudo source parameters for GPR

#’ @param ex.v log linear weight for (exp)^2 part

#’ @param ex.w log exp weight for (exp)^2 part

#’ @param lin.a log linear weight lin part

#’ @param k_add_w log vector of weights for the o-th order additive

kernel respectively

#’ @param vv log variance of GPR w/ normal noise

# i_d now list in style of "dep_parent [[1]][[1]]"

psou_param <- lapply (1:n_models , function(i_m) lapply(sources [[i_m]],

function(i_s) {

l <- list()

l[["sou"]] <- i_s

l[["para"]] <- list("ex.v" = log(5), "ex.w" = log

(10), "lin.a" = log (10), "k_add_w" = log (1), "vv"

= log(1))

l[["conv"]] <- 0

l[["Cov"]] <- matrix ()

l[["ydat"]] <- c()

return(l)

}))

# ESTIMATE all pseudo source parameter via the Gaussian process

likelihoods

psou_param <- lapply (1:n_models , function(i_m) lapply(psou_param[[i_m

]],

function(i_s) est_pseudo_source(data[(doXi != i_s$sou & doXj != i_s$

sou & is.na(doX)) | doX == 0], i_s)))

# log likelihoods using Markov factorization

# ... for sources

maloglike_psources <- lapply (1:n_models , function(i_m) sum(sapply(psou_

param [[i_m]], function(i_s){

return (-0.5*quad.form(solve(i_s$Cov), t(t(i_s$ydat))) - 0.5*log(det(i_

s$Cov)) - 0.5*n_total*log(2*pi))
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})))

# .. for dependants , fix n...

maloglike_dependants <- lapply (1:(n_models -1), function(i_m) sum(sapply(

dep_param[[i_m]], function(i_d){

return (-0.5*quad.form(solve(i_d$Cov), as.matrix(as.matrix(data[doX !=

i_d$dep & !is.na(doX)])[,i_d$dep])) - 0.5*log(det(i_d$Cov)) - 0.5*n

_total*log(2*pi))

})))

# nothing for last model of independent variables

maloglike_dependants [[25]] <- 0

# ... total

totallike <- exp(unlist(maloglike_psources) + unlist(maloglike_

dependants))

# nornalization constant

norm_const <- sum(prob_g*totallike)

# probablities for the individual graphs

prob_g = prob_g*totallike/norm_const
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